两种铸造镍基合金的高温氧化行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Temperature Oxidation Behaviors of Two Cast Ni-based Superalloys
  • 作者:高双 ; 侯介山 ; 杨飞 ; 王常帅 ; 周兰章
  • 英文作者:Gao Shuang;Hou Jieshan;Yang Fei;Wang Changshuai;Zhou Lanzhang;Institute of Metal Research,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:镍基高温合金 ; 抗氧化元素 ; 氧化动力学 ; 氧化机理
  • 英文关键词:Ni-based superalloy;;anti-oxidation element;;oxidation kinetics;;oxidation mechanism
  • 中文刊名:COSE
  • 英文刊名:Rare Metal Materials and Engineering
  • 机构:中国科学院金属研究所;中国科学院大学;
  • 出版日期:2019-03-15
  • 出版单位:稀有金属材料与工程
  • 年:2019
  • 期:v.48;No.392
  • 基金:国家能源局项目(NY20150102);; 国家自然科学基金(51571191)
  • 语种:中文;
  • 页:COSE201903041
  • 页数:7
  • CN:03
  • ISSN:61-1154/TG
  • 分类号:264-270
摘要
利用热重分析法、XRD和SEM (EDS)对比研究了700℃超超临界发电机组用K317和K325铸造合金在900和1000℃大气环境下氧化行为。结果表明,K317的氧化性能要优于K325。在900℃氧化时,2种合金的氧化增重遵循抛物线规律,而在1000℃氧化时,氧化增重均分段遵循抛物线规律。K317的氧化膜分3层,外层是NiO、TiO_2和NiCr_2O_4,中间层是致密的Cr_2O_3,内层是内氧化产物Al_2O_3。而K325的氧化膜分2层,外层是NiO, NiCr_2O_4和Nb_2O_5,内层是致密的Cr_2O_3和嵌入的Nb_2O_5颗粒,没有内氧化现象发生。在1000℃氧化时,K325中的Mo严重被氧化形成挥发性MoO_3;同时氧化膜发生了局部剥落现象,氧化膜的附着性相对较差。
        High temperature oxidation behaviors of cast K317 and K325 alloy at 900 and 1000°C in air environment were contrastively investigated by TGA,XRD and SEM(EDS).The results show that K317 alloy has a superior oxidation resistance compared with K325alloy.The kinetic curves of the two alloys oxidized at 900°C for 100 h obey the parabolic rate law while those at 1000°C obey sectionally the parabolic rate law.The oxide structure of K317,from the top surface down to the base material,consists of NiO-TiO_2-NiCr_2O_4composite oxide,Cr_2O_3 oxide dense band and Al_2O_3 internal oxide.In comparison,internal oxidation is not observed in K325 alloy whose oxide layer is composed of two oxide layers:NiO-NiCr_2O_4-Nb_2O_5 composite oxide and Cr_2O_3 oxide layer.Serious MoO_3 volatilization and oxide spallation take place in K325 alloy after the oxidation at 1000°C for 100 h.In addition,the adhesion property of K325 alloy is worse than that of K317 alloy due to the occurrence of the micro-voids on the oxide layer/substrate interface.
引文
[1] Mao Jianxiong(毛健雄). Electric Power Construction(电力建设)[J],2013, 34(8):69
    [2] Ji Shidong(纪世东),Zhou Rongcan(周荣灿),Wang Shengpeng(王生鹏)et al. Thermal Power Generation(热力发电)[J],2011,40(7):86
    [3] Kim D, Jang C, Ryu W S. Oxidation of Metals[J], 2009, 71(5):271
    [4] Ennis P J, Quadakkers W J, Schuster H. Materials Science and Technology[J], 2013, 8(1):78
    [5] Duval A, Miserque F, Tabarant M et al. Oxidation of Metals[J],2010, 74(5):215
    [6] Kumar D, Adharapurapu R R, Pollock T M et al. Metallurgical and Materials Transactions A[J], 2011, 42(5):1245
    [7] Kumar L, Venkataramani R, Sundararaman M et al. Oxidation of Metals[J].1996, 45(1):221
    [8] Hao Wenhui(郝文慧),Xue Shaozhan(薛绍展), Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2015,44(5):419
    [9] Cao J D, Zhang J S, Chen R F et al. Materials Characterization[J], 2016, 118(2):122
    [10] Li Yun(李云),Shang Haibo(尚海波),Guo Jianting(郭建亭)et al. Acta Metallurgica Sinica(金属学报)[J], 2003,39(7):749
    [11] Vahldiek F W. Journal of the Less Common Metals[J], 1968,16(4):351
    [12] Huntz A M. Materials Science and Engineering A[J], 1995,201(1):211
    [13] Li Meishuan(李美栓),Qian Yuhai(钱余海),Xin Li(辛丽).Corrosion Science and Technology Protection(腐蚀科学与防护技术)[J],1999, 11:284
    [14] He Yedong(何业东),Qi Huibin(齐慧滨). Material Corrosion and Protection Overview(材料腐蚀与防护概论)[M]. Beijing:China Machine Press, 2005:33
    [15] Zhao Shuangqun(赵双群),Dong Jianxin(董建新),Zhang Maicang(张麦仓)et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J],2005, 34(2):208
    [16] Elliott P,Hampton A F. Oxidation of Metals[J],1980, 14(5):449
    [17] Huang Xiaoxiao(黄晓晓),Li Jinshan(李金山),Hu Rui(胡锐)et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2010, 39(11):31
    [18] Shida Y, Wood G C, Stott F H et al. Corrosion Science[J],1981,21(8):581
    [19] Lobnig R E, Schmidt H P, Hennesen K et al. Oxidation of Metals[J].1992, 37(1):81