脉冲参数对介质阻挡放电等离子体CH_4干重整特性影响的实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Pulse Parameters on Dry Reforming of CH_4 by Pulsed DBD Plasma
  • 作者:王晓玲 ; 高远 ; 张帅 ; 孙昊 ; 李杰 ; 邵涛
  • 英文作者:Wang Xiaoling;Gao Yuan;Zhang Shuai;Sun Hao;Li Jie;Shao Tao;School of Electrical Engineering Dalian University of Technology;Key Laboratory of Power Electronics and Electric Drive Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:微秒脉冲放电 ; 介质阻挡放电 ; 甲烷干重整 ; 合成气
  • 英文关键词:Microsecond pulsed discharge;;dielectric barrier discharge;;dry reforming of methane;;syngas
  • 中文刊名:DGJS
  • 英文刊名:Transactions of China Electrotechnical Society
  • 机构:大连理工大学电气工程学院;中国科学院电力电子与电气驱动重点实验室;中国科学院大学;
  • 出版日期:2018-11-06 10:47
  • 出版单位:电工技术学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金重点项目(51637010);国家自然科学基金青年基金(51707186);; 中国科学院洁净能源创新研究院合作基金(DNL180204)资助项目
  • 语种:中文;
  • 页:DGJS201906021
  • 页数:9
  • CN:06
  • ISSN:11-2188/TM
  • 分类号:215-223
摘要
甲烷干重整(DRM)是一种将CH_4和CO_2转化为高价值的化学产品和清洁燃料的技术,是减少温室气体排放、缓解温室效应的有效途径。非热等离子体(NTP)由于可以有效避免传统热处理方法成本高、操作温度高、能耗高等问题而被认为是一种有效的替代方法。本文研究微秒脉冲介质阻挡放电(DBD)等离子体催化CH_4干重整过程,通过改变重复频率和脉宽,考察不同放电参数对重整反应转化特性的影响。实验结果表明,甲烷干重整反应的主要气态产物为H_2、CO和C_2H_6。CH_4&CO_2的转化率和产物合成气的产率均随重复频率的增加而增加,但在高重复频率下容易产生更多的积炭和液态烃,导致碳氢平衡降低。在电压和频率固定时,增大脉宽,发现在电压下降沿获得更高幅值的反向电流,意味着反向增压过程中增强了二次放电,一定程度上有利于促进CH_4&CO_2转化成合成气。
        Dry reforming of methane(DRM) is a technology that converts methane and carbon dioxide into valuable chemicals and clean fuels. It is an effective way to reduce greenhouse gas emissions and mitigate Greenhouse effect. Non-thermal plasma(NTP) can effectively avoid the problems of high cost and high operating temperature in traditional thermal methods, which is considered as an alternative way for DRM. The DRM process driven by microsecond pulsed dielectric barrier discharge(DBD) plasma was studied in this paper. By changing the repetition frequency and pulse width, the effects of different discharge parameters on the conversion characteristics of DRM were investigated. The results show that the main gaseous products of DRM reaction are syngas(H_2&CO) and C_2 H_6. CH_4&CO_2 conversions and the syngas yields increase with the increase of repetition frequency; however, more carbon and liquid hydrocarbons are produced at higher repetition frequency, which leads to the decrease of hydrogen and carbon balance. While with longer pulse width,higher current amplitude of secondary discharge during voltage falling edge can be obtained, which is favorable for promoting the conversion of CH_4&CO_2 into syngas.
引文
[1]QuéréC L,Andrew R M,Friedlingstein P,et al.Global Carbon Budget 2017[J].Earth System Science Data,2018,10(1):405-448.
    [2]Wang Li,Yi Yanhui,Wu Chunfei,et al.One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasmadriven catalysis[J].Angewandte Chemie,2017,56(44):13679-13683.
    [3]Pakhare D,Spivey J.A review of dry(CO2)reforming of methane over noble metal catalysts[J].Chemical Society Reviews,2014,43(22):7813-7837.
    [4]荣命哲,刘定新,李美,等.非平衡态等离子体的仿真研究现状与新进展[J].电工技术学报,2014,29(6):271-282.Rong Minzhe,Liu Dingxin,Li Mei,et al.Research status and new progress on the numerical simulation of non-equilibrium plasma[J].Transactions of China Electrotechnical Society,2014,29(6):271-282.
    [5]张凯,王瑞雪,韩伟,等.等离子体重油加工技术研究进展[J].电工技术学报,2016,31(24):1-15.Zhang Kai,Wang Ruixue,Han Wei,et al.Progress of heavy oil processing by plasma technology[J].Transactions of China Electrotechnical Society,2016,31(24):1-15.
    [6]戴栋,宁文军,邵涛.大气压低温等离子体的研究现状与发展趋势[J].电工技术学报,2017,32(20):1-9.Dai Dong,Ning Wenjun,Shao Tao.Review on the state of art and future trends of atmospheric pressure low temperature plasmas[J].Transactions of China Electrotechnical Society,2017,32(20):1-9.
    [7]邵涛,章程,王瑞雪,等.大气压脉冲气体放电与等离子体应用[J].高电压技术,2016,42(3):685-705.Shao Tao,Zhang Cheng,Wang Ruixue,et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J].High Voltage Engineering2016,42(3):685-705.
    [8]Martini L M,Dilecce G,Guella G,et al.Oxidation of CH4 by CO2 in a dielectric barrier discharge[J].Chemical Physics Letters,2014,593:55-60.
    [9]丁玉柱,夏胜国,王琼芳,等.介质阻挡放电对甲烷离解及燃烧火焰的影响[J].中国电机工程学报,2011,31(31):204-210.Ding Yuzhu,Xia Shengguo,Wang Qiongfang,et al.Effect of dielectric barrier discharge on methane dissociation and combustion[J].Proceedings of the CSEE,2011,31(31):204-210.
    [10]Ray D,Reddy P M K,Challapalli S.Glass beads packed DBD-plasma assisted dry reforming of methane[J].Topics in Catalysis,2017,60(12):869-878.
    [11]白敏冬,朱晓峰,白敏菂,等.大气压DBD甲烷二氧化碳转化方法研究[J].北京理工大学学报,200525(增刊1):217-221.Bai Mindong,Zhu Xiaofeng,Bai Mindi,et al.Study on methane and carbon dioxide conversion using DBD at atmospheric pressure[J].Journal of Beijing Institute of Technology,2005,25(S1):217-221.
    [12]Snoeckx R,Zeng Yuxuan,Tu Xin,et al.Plasmabased dry reforming:improving the conversion and energy efficiency in a dielectric barrier discharge[J].RSC Advances,2015,38(5):29799.
    [13]Ozkan A,Dufour T,Arnoult G,et al.CO2-CH4conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge[J].Journal of CO2 Utilization,2015,9:74-81.
    [14]林浩凡,王瑞雪,谢庆,等.等离子体射流快速改性促进表面电荷衰减[J].电工技术学报,2017,32(16):256-264.Lin Haofan,Wang Ruixue,Xie Qing,et al.Rapid surface modification by plasma jet to promote surface charge decaying[J].Transactions of China Electrotechnical Society,2017,32(16):256-264.
    [15]高远,张帅,刘峰,等.脉冲介质阻挡放电等离子体催化CH4直接转化[J].电工技术学报,2017,32(2):61-69.Gao Yuan,Zhang Shuai,Liu Feng,et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J].Transactions of China Electrotechnical Society,2017,32(2):61-69.
    [16]Duan Lijuan,Jiang Nan,Lu Na,et al.Synergetic effect of TiO2,and Fe3+,as co-catalysts for enhanced phenol degradation in pulsed discharge system[J].Applied Catalysis B Environmental,2018,221:521-529.
    [17]Hussain A,Khoja,Muhammad,et al.Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations[J].Energy Conversion&Management,2017,144:262-274.
    [18]潘俊,方志.多脉冲均匀介质阻挡放电特性的仿真及实验研究[J].高电压技术,2012,38(5):1132-1140.Pan Jun,Fang Zhi.Simulation and experimental studies on discharge characteristics of multiple pulse homogeneous dielectric barrier discharge[J].High Voltage Engineering,2012,38(5):1132-1140.
    [19]牛宗涛,章程,王瑞雪,等.脉冲重复频率对微秒脉冲滑动放电特性影响的实验研究[J].电工技术学报,2016,31(19):191-198.Niu Zongtao,Zhang Cheng,Wang Ruixue,et al Experimental study on the effect of the pulse repetition frequency on the characteristics of microsecond-pulse gliding discharges[J].Transactions of China Electrotechnical Society,201631(19):191-198.
    [20]张凯,王瑞雪,高远,等.微秒和纳秒脉冲激励下甲烷DBD电学特性研究[J].高压电器,2017,53(4):5-12.Zhang Kai,Wang Ruixue,Gao Yuan,et al.Electric characteristics research of methane discharge based on DBD Reactor under microsecond and nanosecond pulse power sources[J].High Voltage Apparatus2017,53(4):5-12.
    [21]Kozák T,Bogaerts A.Splitting of CO2 by vibrational excitation in non-equilibrium plasmas:a reaction kinetics model[J].Plasma Sources Science Technology,2014,23(4):045004.
    [22]Ghorbanzadeh A M,Modarresi H.Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure:the effect of pulse compression[J].Journal of Applied Physics,2007,101(12):123303.
    [23]Mignard D,Sahibzada M,Duthie J M,et al.Methanol synthesis from flue-gas CO2,and renewable electricity:a feasibility study[J].International Journal of Hydrogen Energy,2003,28(4):455-464.
    [24]Zhang Xuming,Cha Min Suk.Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor[J].Journal of Physics D:Applied Physics,2013,46(41):415205.