动能空间尺度分解及其在高原切变线的分析应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Decomposition of Kinetic Energy based on Spatial Scale and Its Application in the Process of the Plateau Shear Line
  • 作者:罗潇 ; 李国平
  • 英文作者:LUO Xiao;LI Guoping;School of Atmospheric Sciences,Chengdu University of Information Technology;Ministry of Education & Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD) ,Nanjing University of Information Science & Technology;
  • 关键词:切变线 ; 扰动动能 ; 动能分解 ; 能量串级
  • 英文关键词:Shear line;;turbulent kinetic energy;;Energy decomposition;;Energy cascade
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:成都信息工程大学大气科学学院;气象灾害预报预警与评估协同创新中心/南京信息工程大学;
  • 出版日期:2019-04-28
  • 出版单位:高原气象
  • 年:2019
  • 期:v.38
  • 基金:国家重点研发计划项目(2018YFC1507200);; 国家自然科学基金项目(41675057,41765003,41675042)
  • 语种:中文;
  • 页:GYQX201902008
  • 页数:11
  • CN:02
  • ISSN:62-1061/P
  • 分类号:90-100
摘要
应用NCEP FNL(1°×1°)全球分析资料和动能的空间尺度分解方法,对2014年8月25—27日一次高原切变线过程进行了能量诊断分析。结果表明:低层扰动动能的增幅与高原切变线的发生发展密切相关,在切变线的生成阶段至成熟阶段,扰动动能增加为切变线的发生发展提供了能量保障;平均动能变化大体与扰动动能呈相反趋势,在切变线生成阶段和发展阶段,中低层平均动能随时间减小。在影响动能变化的各因子中,斜压转换项贡献最大;在切变线生成阶段,低层平均动能与扰动动能间的转换对扰动动能变化影响明显。背景场和扰动场的相互作用使得扰动动能增大而平均动能减小,构成动能的降尺度串级,这种能量串级转换有利于中尺度的高原切变线生成。
        Using NCEP global 1°×1° final-analysis data,with decomposition method of kinetic energy based on spatial scale,the energy diagnosis analysis of a plateau shear line process during 25—27 August 2014 was conducted. The results showthat: the enlargement of the turbulent kinetic energy in the lower troposphere was closely associated with the occurrence and evolution of the plateau shear line,from the formation stage to maturation stage,the increase of turbulent kinetic energy provided energy guarantee for the formation and development of the shear line. The kinetic energy had opposite trends in the mean flowand the turbulent flow,on the formation stage and the developing stage,the mean kinetic energy decrease with time in the lower to middle troposphere.The baroclinic energy conversion dominated the trend of kinetic energy among all the budget terms. On the formation stage of the shear line,the conversion from the mean kinetic energy to the turbulent kinetic energy had an obvious influence on the trend of turbulent kinetic energy in the lower troposphere,the increase of the turbulent kinetic energy and decrease of mean kinetic energy was caused by the interaction between the background circulation and eddy field,constituting a downscaled energy cascade of kinetic energy,This energy cascade conversion is beneficial to the formation of the plateau shear line,which is belong to the mesoscale system.
引文
Dutton J A,Johnson D R,1967.The theory of available potential energy and a variational approach to atmospheric energetics[J].Advances in Geophysics,12:333-436.
    Fu S,2012.Circulation and eddy kinetic energy budget analyses on the evolution of a Northeast China Cold Vortex(NCCV)in M ay 2010[J].Journal of the Meteorological Society of Japan,90(4):553-573.
    Fu S,Wang H,Sun J,et al,2016.Energy budgets on the interactions betw een the mean and eddy flow s during a persistent heavy rainfall event over the Yangtze River valley in summer 2010[J].Acta M eteorologica Sinica,30(4):513-527.
    Holopainen E O,1978.A diagnostic study on the kinetic energy balance of the long-term mean flow and the associated transient fluctuation in the atmosphere[J].Geophysica,15:125-145.
    Iw asaki T,2010.Atmospheric energy cycle view ed from w ave-meanflow interaction and lagrangian mean circulation[J].Journal of the Atmospheric Sciences,58(20):3036-3052.
    Kornegay F C,Vincent D G,2009.Kinetic energy budget analysis during interaction of tropical storm Candy(1968)w ith an extratropical frontal system[J].M onthly Weather Review,104(7):849.
    Kucharski F,1997.On the concept of exergy and available potential energy[J].Quarterly Journal of the Royal M eteorological Society,123(543):2141-2156.
    Kucharski F,Thorpe A J,2000.Local energetics of an idealized baroclinic w ave using extended exergy[J].Journal of the Atmospheric Sciences,57(19):3272-3284.
    Lorenz E N,1955.Available potential energy and the maintenance of the general circulation[J].Tellus,7(2):157-167.
    Luo H,Yanai M,1983.The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979.Part I:Precipitation and kinematic analyses[J].M onthly Weather Review,111(5):922-944.
    Oort A H,1964.On estimates of the atmospheric energy cycle[J].M onthly Weather Review,92(11):483-493.
    Plumb R A,1983.A new look at the energy cycle[J].Journal of the Atmospheric Sciences,40(7):1669-1688.
    Saltsman B,1957.Equations governing the energetics of the larger scales of atmospheric turbulence in the domain of w ave number[J].Meteorology,14(6):513-523.
    Smith P J,2009.M idlatitude synoptic scale systems:Their kinetic energy budgets and role in the general circulation[J].M onthly Weather Review,101(10):757-762.
    Vincent D G,Long N C,2010.Kinetic energy budgets of moving systems:Case studies for an extratropical cyclone and hurricane Celia,1970[J].Tellus,27(3):215-233.
    Wang W,Kuo Y H,Warner T T,1993.A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau[J].M onthly Weather Review,121(9):2542-2561.
    Xia R,Fu S,Wang D,2012.On the vorticity and energy budgets of the cold vortex in Northeast China:a case study[J].M eteorology&Atmospheric Physics,118(1-2):53-64.
    Zheng Q,Liou K N,1986.Dynamic and thermodynamic influences of the Tibetan Plateau on the atmosphere in a general circulation model[J].Journal of the Atmospheric Sciences,43(13):1340-1355.
    邓国卫,孙俊,阮贵宾,等,2017.四川省暴雨洪涝灾情特征及主汛期环流背景分析[J].高原气象,36(6):1521-1532.DOI:10.7522/j.issn.1000-0534.2016.00099.
    邓伟,陈海波,马振升,等,2009.NCEP FNL全球分析资料的解码及其图形显示[J].气象与环境科学,32(3):78-82.
    董元昌,李国平,2015.大气能量学揭示的高原低涡个例结构及降水特征[J].大气科学,39(6):1136-1148.
    高守亭,刘璐,李娜,2013.近几年中尺度动力学研究进展[J].大气科学,37(2):319-330.
    何光碧,高文良,屠妮妮,2009.2000-2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象,28(3):549-555.
    何光碧,师锐,2014.三次高原切变线过程演变特征及其对降水的影响[J].高原气象,33(3):615-625.DOI:10.7522/j.issn.1000-0534.2013.00023.
    李山山,李国平,2017a.一次高原低涡与高原切变线演变过程与机理分析[J].大气科学,41(4):713-726.
    李山山,李国平,2017b.一次鞍型场环流背景下高原东部切变线降水的湿Q矢量诊断分析[J].高原气象,36(2):317-329.DOI:10.7522/j.issn.1000-0534.2016.00025.
    刘晓冉,李国平,2006.青藏高原低涡研究的回顾与展望[J].干旱气象,24(1):60-66.
    罗雄,李国平,2018a.一次高原切变线过程的数值模拟与阶段性结构特征[J].高原气象,37(2):406-419.DOI:10.7522/j.issn.1000-0534.2017.00046.
    罗雄,李国平,2018b.高空急流对青藏高原切变线影响的数值试验与动力诊断[J].气象学报,76(3):361-378.
    乔全明,谭海清,1984.夏季青藏高原500毫巴切变线的结构与大尺度环流[J].高原气象,3(3):50-57.
    青藏高原气象科学研究拉萨会战组,1981.夏半年青藏高原500毫巴低涡切变线的研究[M].科学出版社.
    王中,陈艳英,2007.触发重庆山洪灾害的典型环流和影响系统分析[J].高原气象,26(3):609-614.
    郁淑华,高文良,彭骏,2013.近13年青藏高原切变线活动及其对中国降水影响的若干统计[J].高原气象,32(6):1527-1537.DOI:10.7522/j.issn.1000-0534.2012.00149.
    郁淑华,屠妮妮,高文良,2018.一类青藏高原低涡异常路径的环境场分析[J].高原气象,37(3):686-701.DOI:10.7522/j.issn.1000-0534.2017.00039.
    赵大军,姚秀萍,2018.高原切变线形态演变过程中的个例研究:结构特征[J].高原气象,37(2):420-431.DOI:10.7522/j.issn.1000-0534.2017.00066.
    中国气象局成都高原气象研究所,2016.青藏高原低涡切变线年鉴(1998-2015)[M].北京:科学出版社.