流动态可燃气体爆炸极限的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Test on Explosive Limit of Flowing Combustible Gas
  • 作者:谭迎新 ; 霍雨江 ; 张华荣 ; 宋锦武
  • 英文作者:TAN Ying-xin;HUO Yu-jiang;ZHANG Hua-rong;SONG Jin-wu;School of Environment and Safety Engineering,North University of China;Guangzhou GRG Metrology & Test Co.,Ltd.;
  • 关键词:可燃气体 ; 气体爆炸 ; 爆炸极限
  • 英文关键词:combustible gas;;gas explosion;;explosion limit
  • 中文刊名:HBGG
  • 英文刊名:Journal of North University of China(Natural Science Edition)
  • 机构:中北大学环境与安全工程学院;广州广电计量检测股份有限公司;
  • 出版日期:2019-07-16
  • 出版单位:中北大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.187
  • 基金:山西省平台基地和人才专项资助项目(201705D211002)
  • 语种:中文;
  • 页:HBGG201905012
  • 页数:4
  • CN:05
  • ISSN:14-1332/TH
  • 分类号:69-72
摘要
利用自行建立的可燃气体动态爆炸特性试验装置,通过试验研究了甲烷、液化石油气(含杂质)和氢气的动态爆炸极限.测试数据表明,甲烷的动态爆炸上限为5.25%,动态爆炸下限为17.05%;液化石油气(含杂质)的动态爆炸上限为2.55%,动态爆炸下限为12.85%;氢气的动态爆炸上限为4.35%,动态爆炸下限为76.05%.通过比较发现这3种可燃气体在动态条件下的爆炸下限值比静态时的爆炸下限高,动态条件下的爆炸上限值比静态时的爆炸上限低,说明动态条件下的爆炸极限范围比静态爆炸极限范围小.
        In order to study the dynamic explosion limit of combustible gas,a set of test device was built.The dynamic explosion limit of methane,liquefied petroleum gas(contain impurity)and hydrogen were tested.The results show that the dynamic explosion limit of methane is 5.25%~17.05%,the dynamic explosion limit of liquefied petroleum gas(contain impurity)is 2.55%~12.85%,the dynamic explosion limit of hydrogen is 4.35%~76.05%.The dynamic lower explosion limits of three kinds of combustible gas are higher than the lower static explosion limits,the dynamic upper explosion limits are lower than the upper static explosion limits,and dynamic explosion limit range is smaller than static explosion limit range.
引文
[1]Tan Y X,Han Y.Propagation velocity measurement for flame of gas explosion in horizontal tube[J].Journal of Measurement Science and Instrumentation,2017,8(1):21-26.
    [2]王华,葛岭梅,邓军,等.受限空间可燃性气体爆炸特性的对比[J].煤炭学报,2009,34(2):218-223.Wang Hua,Ge Lingmei,Deng Jun,et al.Comparsion of explosion characteristics of ignitable gases in comfined space[J].Journal of China Coal Society,2009,34(2):218-223.(in Chinese)
    [3]谢溢月.湍流对可燃气体(蒸气)爆炸极限及火焰传播过程的影响[D].太原:中北大学,2017.
    [4]陆胤臣,陶刚,张礼敬.球形容器内甲烷-空气爆炸特性分析与理论计算[J].爆炸与冲击,2017,37(4):773-778.Lu Yinchen,Tao Gang,Zhang Lijing.Analysis and theoretical calculation of explosion characteristics of methane-air mixture in a spherical vessel[J].Explosion and Shock Waves,2017,37(4):773-778.(in Chinese)
    [5]谭迎新,焦国太,霍雨江,等.一种管道式可燃气体的动态爆炸极限参数测定装置[P].中国专利:CN201721010437.9,2018-02-02.
    [6]邓军,程方明,罗振敏,等.湍流状态下甲烷爆炸特性的实验研究[J].中国安全科学学报,2008,18(8):85-88.Deng Jun,Cheng Fangming,Luo Zhenmin,et al.Experimental study on methane explosion property in turbulent flow[J]. China Safety Science Journal,2008,18(8):85-88.(in Chinese)
    [7]霍雨江,谭迎新,谢溢月.湍流状态下氢气爆炸极限的试验研究[J].消防科学与技术,2017,36(8):1040-1043.Huo Yujiang,Tan Yingxin,Xie Yiyue.Test on explosive limits of hydrogen in turbulent flow[J].Fire Science and Technology,2017,36(8):1040-1043.(in Chinese)
    [8]霍雨江.流动态可燃气体的爆炸特性测试装置设计[D].太原:中北大学,2018.
    [9]GB/T 12474-2008空气中可燃气体爆炸极限测定方法[S].北京:中国标准出版社,2008