长白山原始针叶林沼泽湿地生态系统碳储量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China
  • 作者:王伯炜 ; 牟长城 ; 王彪
  • 英文作者:WANG Bowei;MU Changcheng;WANG Biao;Center for Ecological Research,Northeast Forestry University;
  • 关键词:温带长白山 ; 原始针叶林沼泽湿地 ; 生态系统碳储量 ; 净初级生产力 ; 年净固碳量
  • 英文关键词:temperate Changbai Mountain;;original coniferous forest swamp wetland;;ecosystem carbon storage;;net primary productivity;;net carbon sequestration
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:东北林业大学生态研究中心;
  • 出版日期:2019-02-27 08:30
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31370461);; 国家“十三五”重点研发计划项目(2016YFC050021-02)
  • 语种:中文;
  • 页:STXB201909030
  • 页数:11
  • CN:09
  • ISSN:11-2031/Q
  • 分类号:329-339
摘要
采用年轮分析及相对生长方程法与碳/氮分析仪测定法,测定温带长白山沿湿地过渡带环境梯度依次分布的5种典型原始沼泽类型(草丛沼泽-C、灌丛沼泽-G、落叶松泥炭藓沼泽-LN、落叶松藓类沼泽-LX和落叶松苔草沼泽-LT)生态系统碳储量(植被和土壤)、植被净初级生产力与年净固碳量,定量评价温带森林湿地固碳能力及其长期碳汇作用,并揭示其沿过渡带水分环境梯度的空间分异规律。结果表明:①5种天然沼泽类型的植被碳储量(3.18±1.70)—(112.2±18.3) tC/hm~2沿过渡带环境梯度总体上呈递增趋势,针叶林沼泽显著高于C和G 12.2—34.3倍,G高于C 0.6倍,且LX和LT显著高于LN 0.3—0.6倍;②土壤碳储量(296.3±42.2)—(824.50±50.79) tC/hm~2沿过渡带环境梯度总体上呈递减趋势,C显著高于G和针叶林沼泽30.8%—178.3%(P<0.05),G显著高于针叶林沼泽38.7%—112.8%,且LN和LT显著高于LX 32.8%—53.4%;③生态系统碳储量(408.42±57.53)—(827.52±50.96) tC/hm~2沿过渡带环境梯度总体上也呈递减趋势,C显著高于G和针叶林沼泽30.2%—102.7%,G显著高于针叶林沼泽21.5%—55.6%,且LN和LT显著高于LX 18.8%—28.0%;④5种沼泽类型的植被净初级生产力与年净固碳量分布在(5.74±0.08)—(10.98±1.67) t hm~(-2) a~(-1)和(2.44±0.03)—(5.17±0.83)tC hm~(-2) a~(-1),其中,LX和LT的植被净初级生产力显著高于C、G和LN 61.2%—91.3%和34.5%—59.6%;而在植被年净固碳量方面,3种针叶林沼泽类型均显著高于C和G 28.7%—111.9%和19.4%—96.6%。故长白山5种天然沼泽类型的植被净初级生产力与年净固碳量沿湿地过渡带环境梯度总体上呈现出阶梯式递增趋势,且仅有LX和LT达到了中国陆地植被及全球陆地植被平均固碳水平。因此,温带长白山沼草丛沼泽和灌丛沼泽长期碳汇作用强于森林沼泽,湿地碳汇管理实践中应重视草丛沼泽和灌丛沼泽的保护与恢复。
        An annual ring analysis, relative growth equation method, and carbon/nitrogen analysis assay were used to determine the ecosystem carbon stocks(vegetation and soil) of five typical types of primitive swamps(Swamp Swamp-C, Shrub Swamp-G, Larix olgensis-Sphagnum magellanicum swamp-LN, Larix olgensis-moss swamp-LX, and Larix olgensis-Carex schmidtii swamp-LT) in the transitional zone of the wetland in the temperate zone of Changbai Mountain. The results showed that ① The vegetation carbon stocks of the five natural swamp types were(3.18±1.70)—(112.2±18.3) tC/hm~2, which increased gradually along the transitional zone. The conifer forest swamps had significantly higher values than did C and G by 12.2 and 34.3 times, respectively, G was higher than C by 0.6 times, and LX and LT were significantly higher than LN by 0.3 and 0.6 times; ② The soil carbon stocks of(296.3±42.2)—(824.50±50.79) tC/hm~2 declined along the environmental gradient of the transitional zone, C was significantly higher than that of G and the coniferous forest swamps by 30.8%—178.3%. Coniferous forest swamps were lower by 38.7%—112.8%, and LN and LT were significantly higher than LX 32.8%—53.4%; ③ The ecosystem carbon stocks of(408.42±57.53)—(827.52±50.96) tC/hm~2 also showed a decreasing trend along the transitional zone, C was significantly higher than G and coniferous forest swamps by 30.2%—102.7%, and G was significantly higher than that of coniferous forests. Marsh was higher by 21.5%—55.6%, and LN and LT were significantly higher than LX by 18.8%—28.0%; ④ The net primary productivity and annual net carbon sequestration of vegetation in the five swamp types were distributed at(5.74±0.08)—(10.98±1.67) t hm~(-2) a~(-1) and(2.44±0.03)—(5.17±0.83) tC hm~(-2) a~(-1), of which, the net primary productivity of LX and LT was significantly higher than that of C, G, and LN by 61.2%—91.3% and 34.5%—59.6%. In terms of annual net carbon sequestration of vegetation, the coniferous forest swamp types were significantly higher than those of C and G by 28.7%—111.9% and 19.4%—96.6%. That is why the net primary productivity and annual net carbon fixation of the five natural marsh types in Changbai Mountain show a stepwise increasing trend along the environmental gradient in the transitional zone of wetlands. However, only LX and LT reached the average carbon fixation of land vegetation and global terrestrial vegetation in China. Therefore, the long-term carbon sink effect of the Changbai mountain marsh swamps and shrub swamps is stronger than that of forest swamps. We should protect and restore swamps and shrub swamps in our wetland carbon sink management practices.
引文
[1] Odum W E,Odum E P,Odum H T.Nature′s pulsing paradigm.Estuaries,1995,18(4):547.
    [2] Chmura G L,Anisfeld S C,Cahoon D R,Lynch J C.Global carbon sequestration in tidal,saline wetland soils.Global Biogeochemical Cycles,2003,17(4):1111.
    [3] Mitra S,Wassmann R,Vlek P L G.An appraisal of global wetland area and its organic carbon stock.Current Science,2005,88(1):25- 35.
    [4] Mitsch W J,Gosselink J G.Wetlands.5th ed.Hoboken,NJ:John Wiley & Sons,2015.
    [5] Lal R.Carbon sequestration.Philosophical Transactions of the Royal Society B:Biological Sciences,2008,363(1492):815- 830.
    [6] Whiting G J,Chanton J P.Greenhouse carbon balance of wetlands:methane emission versus carbon sequestration.Tellus B,2001,53(5):521- 528.
    [7] Frolking S,Roulet N,Fuglestvedt J.How northern peatlands influence the Earth′s radiative budget:sustained methane emission versus sustained carbon sequestration.Journal of Geophysical Research,2006,111(G1):G01008.
    [8] Page S E,Rieley J O,Banks C J.Global and regional importance of the tropical peatland carbon pool.Global Change Biology,2011,17(2):798- 818.
    [9] Mitsch W J,Bernal B,Nahlik A M,Mander ü,Zhang L,Anderson C J,J?rgensen S E,Brix H.Wetlands,carbon,and climate change.Landscape Ecology,2013,28(4):583- 597.
    [10] Jenkinson D S,Adams D E,Wild A.Model estimates of CO2 emissions from soil in response to global warming.Nature,1991,351(6324):304- 306.
    [11] Larson D L.Effects of climate on numbers of northern prairie wetlands.Climatic Change,1995,30(2):169- 180.
    [12] IPCC.Special Report:Land Use,Land—Use Change and Forestry.Cambridge:Cambridge University Press,2000.
    [13] Neher D A,Barbercheck M E,El-Allaf S M,Anas O.Effects of disturbance and ecosystem on decomposition.Applied Soil Ecology,2003,23(2):165- 179.
    [14] Bai J H,Ouyang H,Deng W,Zhu Y M,Zhang X L,Wang Q G.Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands.Geoderma,2005,124(1/2):181- 192.
    [15] Roulet N T.Peatlands,carbon storage,greenhouse gases,and the Kyoto protocol:prospects and significance for Canada.Wetlands,2000,20(4):605- 615.
    [16] Armentano T V,Menges E S.Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone.Journal of Ecology,1986,74(3):755- 774.
    [17] Post W M,Emanuel W R,Zinke P J,Stangenberger A G.Soil carbon pools and world life zones.Nature,1982,298(5870):156- 159.
    [18] Gorham E.Northern peatlands:role in the carbon cycle and probable responses to climatic warming.Ecological Applications,1991,1(2):182- 195.
    [19] Tolonen K,Vasander H,Damman A W H,Clymo R S.Preliminary estimate of long-term carbon accumulation and loss in 25 boreal peatlands.Suo,1992,43(4/5):277- 280.
    [20] Bockheim J G,Hinkel K M,Nelson F E.Predicting carbon storage in tundra soils of Arctic Alaska.Soil Science Society of America Journal,2003,67(3):948- 950.
    [21] Moore T R,Turunen J.Carbon accumulation and storage in mineral subsoil beneath peat.Soil Science Society of America Journal,2004,68(2):690- 696.
    [22] Wang G,Guan D S,Peart M R,Chen Y J,Peng Y S.Ecosystem carbon stocks of mangrove forest in Yingluo Bay,Guangdong Province of South China.Forest Ecology and Management,2013,310:539- 546.
    [23] Kauffman J B,Heider C,Cole T G,Dwire K A,Donato D C.Ecosystem carbon stocks of Micronesian mangrove forests.Wetlands,2011,31(2):343- 352.
    [24] Kauffman J B,Bhomia R K.Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa:global and regional comparisons.PLoS One,2017,12(11):e0187749.
    [25] Ricker M C,Lockaby B G.Soil organic carbon stocks in a large eutrophic floodplain forest of the southeastern Atlantic Coastal Plain,USA.Wetlands,2015,35(2):291- 301.
    [26] Bridgham S D,Megonigal J P,Keller J K,Bliss N B,Trettin C.The carbon balance of North American wetlands.Wetlands,2006,26(4):889- 916.
    [27] Maltby E,Immirzi P.Carbon dynamics in peatlands and other wetland soils regional and global perspectives.Chemosphere,1993,27(6):999- 1023.
    [28] Roulet N T,Lafleur P M,Richard P J H,Moore T R,Humphreys E R,Bubier J.Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland.Global Change Biology,2007,13(2):397- 411.
    [29] Franzluebbers A J,Haney R L,Honeycutt C W,Arshad M A,Schomberg H H,Hons F M.Climatic influences on active fractions of soil organic matter.Soil Biology and Biochemistry,2001,33(7/8):1103- 1111.
    [30] Mitsch W J,Nahlik A,Wolski P,Bernal B,Zhang L,Ramberg L.Tropical wetlands:seasonal hydrologic pulsing,carbon sequestration,and methane emissions.Wetlands Ecology and Management,2010,18(5):573- 586.
    [31] Bernal B,Mitsch W J.Comparing carbon sequestration in temperate freshwater wetland communities.Global Change Biology,2012,18(5):1636- 1647.
    [32] Villa J A,Mitsch W J.Carbon sequestration in different wetland plant communities in the Big Cypress Swamp region of Southwest Florida.International Journal of Biodiversity Science,Ecosystem Services & Management,2015,11(1):17- 28.
    [33] 郎惠卿.中国湿地植被.北京:科学出版社,1999.
    [34] 李文华.东北地区有关水土资源配置、生态与环境保护和可持续发展的若干战略问题研究林业卷:东北地区森林与湿地保育及林业发展战略研究.北京:科学出版社,2007.
    [35] Mu C C,Lu H C,Wang B,Bao X,Cui W.Short-term effects of harvesting on carbon storage of boreal Larix gmelinii-Carex schmidtii forested wetlands in Daxing′anling,Northeast China.Forest Ecology and Management,2013,293:140- 148.
    [36] 李婉姝,牟长城,吴云霞,徐蕊.小兴安岭地区天然沼泽林生产力与植被碳密度.东北林业大学学报,2010,38(8):39- 44.
    [37] 周文昌,牟长城,刘夏,顾韩.火干扰对小兴安岭白桦沼泽和落叶松-苔草沼泽凋落物和土壤碳储量的影响.生态学报,2012,32(20):6387- 6395.
    [38] 牟长城,包旭,卢慧翠,王彪,崔巍.火干扰对大兴安岭兴安落叶松瘤囊苔草湿地生态系统碳储量的短期影响.林业科学,2013,49(2):8- 14.
    [39] 刘夏,牟长城,周文昌,包旭.采伐对小兴安岭森林沼泽土壤碳质量分数和碳密度的影响.东北林业大学学报,2013,41(1):42- 47.
    [40] 牟长城,卢慧翠,包旭,王彪,崔巍.采伐干扰对大兴安岭落叶松-苔草沼泽植被碳储量的影响.生态学报,2013,33(17):5286- 5298.
    [41] 卢慧翠,牟长城,王彪,包旭,崔巍.采伐对大兴安岭落叶松-苔草沼泽土壤有机碳储量的影响.林业科学研究,2013,26(4):459- 466.
    [42] 崔巍,牟长城,卢慧翠,包旭,王彪.排水造林对大兴安岭湿地生态系统碳储量的影响.北京林业大学学报,2013,35(5):28- 36.
    [43] Blais A M,Lorrain S,Plourde Y,Varfalvy L.Organic carbon densities of soils and vegetation of tropical,temperate and boreal forests//Tremblay A,Varfalvy L,Roehm C,Garneau M,eds.Greenhouse Gas Emissions-Fluxes and Processes:Hydroelectric Reservoirs and Natural Environments.Berlin,Heidelberg:Springer,2005:155- 185.
    [44] Mu C C,Han S J,Luo J C,Wang X P.Biomass distribution patterns of ecotones between forest and swamp in Changbai Mountain.Journal of Forestry Research,2000,11(3):198- 202.
    [45] 牟长城,王彪,卢慧翠,包旭,崔巍.大兴安岭天然沼泽湿地生态系统碳储量.生态学报,2013,33(16):4956- 4965.
    [46] Silvola J,Alm J,Ahlholm U,Nykanen H,Martikainen P J.CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions.Journal of Ecology,1996,84(2):219- 228.
    [47] Chimner R A,Cooper D J.Influence of water table levels on CO2 emissions in a Colorado subalpine fen:an in situ microcosm study.Soil Biology and Biochemistry,2003,35(3):345- 351.
    [48] Blodau C,Moore T R.Experimental response of peatland carbon dynamics to a water table fluctuation.Aquatic Sciences,2003,65(1):47- 62.
    [49] 刘世荣,王晖,栾军伟.中国森林土壤碳储量与土壤碳过程研究进展.生态学报,2011,31(19):5437- 5448.
    [50] 张宪洲.我国自然植被净第一性生产力的估算与分布.资源科学,1993,(1):15- 21.
    [51] 周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报,1996,20(1):11- 19.
    [52] 毛德华,王宗明,罗玲,韩佶兴.1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应.应用生态学报,2012,23(6):1511- 1519.
    [53] Campbell C,Vitt D H,Halsey L A,Campbell I D,Thormann M N,Bayley S E.Net Primary Production and Standing Biomass in Northern Continental Wetlands.Canadian:Northern Forestry Centre,Canadian Forest Service,2000:152- 161.
    [54] Trettin C C,Jurgensen M F,Gale M R.Soil carbon in northern forested wetlands:impacts of silvicultural practices//Kelly J M,McFee W W,eds.Carbon Forms and Functions in Forest Soils.Madison,WI:Soil Science Society of America,1995.
    [55] 何浩,潘耀忠,朱文泉,刘旭拢,张晴,朱秀芳.中国陆地生态系统服务价值测量.应用生态学报,2005,16(6):1122- 1127.
    [56] 李银鹏,季劲钧.全球陆地生态系统与大气之间碳交换的模拟研究.地理学报,2001,56(4):379- 389.