Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tunable unconventional phonon blockade in Fabry-Perot cavity and optical parametric amplifier composite system
  • 作者:李宏 ; 张斯淇 ; 郭明 ; 李美萱 ; 宋立军
  • 英文作者:Li Hong;Zhang Si-Qi;Guo Ming;Li Mei-Xuan;Song Li-Jun;Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University;Jilin Engineering Laboratory for Quantum Information Technology;
  • 关键词:非常规光子阻塞 ; Fabry-Perot腔 ; 二阶关联函数
  • 英文关键词:unconventional photon blockade;;Fabry-Perot cavity;;second-order correlation functions
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:吉林工程技术师范学院量子信息技术交叉学科研究院;吉林省量子信息技术工程实验室;
  • 出版日期:2019-05-30 14:01
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11347013);; 吉林省教育厅科技规划项目(批准号:JJKH20190764KJ);; 吉林工程技术师范学院博士科研启动经费专项(批准号:BSKJ201825)、吉林工程技术师范学院校级一般项目(批准号:XYB201820)资助的课题~~
  • 语种:中文;
  • 页:WLXB201912011
  • 页数:6
  • CN:12
  • ISSN:11-1958/O4
  • 分类号:109-114
摘要
本文提出在Fabry-Perot腔和光学参量放大复合系统中实现非常规光子阻塞效应.此系统包含可调谐的复合型驱动强度相位,用二阶关联函数描述光子统计性质,数值模拟不同参数下的光子阻塞效应,研究发现通过调节复合型驱动强度相位可以控制非常规光子阻塞.在弱驱动条件下,计算得到了强光子反聚束的最优化条件,并给出了二阶关联函数解析式,研究发现数值模拟结果与解析结果相符合.研究结果为光子阻塞的相干操作提供了平台,在量子信息处理和量子光学器件等方面具有潜在的应用前景.
        In this paper, we present a scheme to realize an unconventional photon blockade effect in a Fabry-Perot cavity and optical parametric amplifier(OPA) composite system. The system includes a tunable phase of complex driving strength, the second-order correlation function is used to describe the photon statistical properties. The numerical simulation of the photon blockade effect is conducted with different parameters. Our calculations show that the unconventional photon blockade effect can be controlled by the tunable phase of complex driving strength. Under the weak driving condition, the exact optimal conditions for strong photon anti-bunching are analytically derived(i.e. the optimal nonlinear gain of optical parametric amplifier and the phase of the field driving for the strong photon anti-bunching are obtained), and obtain the analytic calculations of the second-order correlation function. Under the optimal conditions, we perform a numerical simulation with different parameters. The optimal conditions for strong photon anti-bunching are found by analytic calculations, which are in good agreement with the numerical results. The results provide a platform for coherently operating the photon blockade and have potential applications in quantum information processing and quantum optical devices.
引文
[1] Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys.Rev. Lett. 79 1467
    [2] Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601
    [3] Cao C, Mi S C, Wang T, Zhang R, Wang C 2016 IEEE J.Quantum Electron. 52 7000205
    [4] Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R, Wang C 2016 Sci. Rep. 6 22920
    [5] Cao Cong, Chen Xi, Duan Y W, Fan L, Zhang R, Wang T J,Wang C 2017 Optik 130 659
    [6] Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys.Sin. 67 104203(in Chinese)[张秀龙,鲍倩倩,杨明珠,田雪松2018物理学报67 104203]
    [7] Liao Q H, Ye Y, Li H Z, Zhou N R 2018 Acta Phys. Sin. 6740302(in Chinese)[廖庆洪,叶杨,李红珍,周南润2018物理学报67 40302]
    [8] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E,Kimble H J 2005 Nature 436 87
    [9] Greentree A D, Tahan C, Cole J H, Hollenberg L C L 2006Nat. Phys. 2 856
    [10] Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76031805
    [11] Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808
    [12] Shen H Z, Zhou Y H, Yi X X 2014 Phys. Rev. A 90 023849
    [13] Irvine W T M, Hennessy K, Bouwmeester D 2006 Phys. Rev.Lett. 96 057405
    [14] Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838
    [15] Shen H Z, Zhou Y H, Liu H D, Wang G C, Yi X X 2015 Opt.Express 23 32835
    [16] Zhou Y H, Zhang S S, Shen H Z, Yi X X 2017 Opt. Lett. 421289
    [17] Shen H Z, Shang C, Zhou Y H, Yi X X 2018 Phys. Rev. A 98023856
    [18] Shen H Z, Xu S, Zhou Y H, Wang G C, Yi X X 2018 J. Phys.B 51 035503
    [19] Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A97 043819
    [20] Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J, Zhang S2017 Phys. Rev. A 96 042335
    [21] Su S L, Gao Y, Liang E J, Zhang S 2017 Phys. Rev. A 95022319
    [22] Su S L, Liang E J, Zhang S, Wen J J, Sun L L, Jin Z, Zhu A D 2016 Phys. Rev. A 93 012306
    [23] Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express24 17332
    [24] Tang J, Geng W, Xu X 2015 Sci. Rep. 5 9252
    [25] Majumdar A, Bajcsy M, Rundquist A, Vuckovic J 2012 Phys.Rev. Lett. 108 183601
    [26] Zhang W, Yu Z, Liu Y, Peng Y 2014 Phys. Rev. A 8 043832
    [27] Flayac H, Savona V 2016 Phys. Rev. A 94 013815
    [28] Gerace D, Savona V 2014 Phys. Rev. A 89 031803
    [29] Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90063824
    [30] Xu X W, Li Y J 2013 J. Phys. B 46 035502
    [31] Wicz A, Li H R, Miranoao J Q, Nori F, Jing H 2018 Phys.Rev. Lett. 121 153601
    [32] Shi H Q, Xie Z Q, Xu X W, Liu N H 2018 Acta Phys. Sin. 67044203(in Chinese)[石海泉,谢智强,徐勋卫,刘念华2018物理学报67 044203]
    [33] Sarma B, Sarma A K 2017 Phys. Rev. A 96 053827