芽孢杆菌dhs-330-021菌粉的制备及稳定性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Studies on Preparation and Stability of Bacillus sp. dhs-330-021 Powder
  • 作者:司晓光 ; 张晓青 ; 杜瑾 ; 张爱君 ; 曹军瑞
  • 英文作者:SI Xiao-Guang;ZHANG Xiao-Qing;DU Jin;ZHANG Ai-Jun;CAO Jun-Rui;Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources;
  • 关键词:芽孢杆菌 ; 菌粉 ; 保护剂 ; 喷雾干燥
  • 英文关键词:Bacillus sp;;bacterial powder;;protective agents;;spray drying
  • 中文刊名:SWTX
  • 英文刊名:Letters in Biotechnology
  • 机构:自然资源部天津海水淡化与综合利用研究所;
  • 出版日期:2019-01-30
  • 出版单位:生物技术通讯
  • 年:2019
  • 期:v.30;No.151
  • 基金:中央级公益性科研院所基本科研业务费专项(K-JBYWF-2017-G13,K-JBYWF-2017-G14);; 海洋公益性行业科研专项(201505032-2)
  • 语种:中文;
  • 页:SWTX201901017
  • 页数:4
  • CN:01
  • ISSN:11-4226/Q
  • 分类号:91-94
摘要
目的:利用喷雾干燥工艺制备芽孢杆菌dhs-330-021菌粉,并研究菌粉的活性及稳定性。方法:以脱脂乳、海藻糖、β-环糊精和谷氨酸钠为保护剂,采用喷雾干燥(条件为:进口温度100℃,出口温度50~60℃,进样速度2~4mL/min)制备芽孢杆菌菌粉,以喷干存活率和菌粉活菌数为指标,选择最佳制备条件。结果:获得喷干保护剂配方为脱脂乳10.0%、海藻糖6.0%、β-环糊精13.0%、谷氨酸钠15.0%,喷干存活率为65.9%,菌粉活菌数为1.38×109CFU/g,存放180 d后菌粉活菌数为1.03×10~9CFU/g。结论:喷雾干燥工艺可以用于芽孢杆菌dhs-330-021菌粉的制备,获得的菌粉稳定性较好。
        Objective:Fermentation broth of Bacillus sp. dhs-330-021 was prepared by spray drying technology.The activity and stability of bacterial power were researched.Methods:The bacterial power of Bacillus was prepared by spray drying technology at the inlet temperature of 100℃, outlet temperature 50~60℃, and injective flow rate 2~4 mL/min. The protective agents were skim milk, trehalose, β-cyclodextrin and sodium glutamate. The optimal conditions were determined by survival rate and viable counts of bacterial power.Results:The optimal formula of protective agents for spray drying were skim milk 10.0%, trehalose 6.0%, β-cyclodextrin 13.0% and sodium glutamate 15.0%. Under the optimal conditions, the survival rate was 65.9%, the viable counts were 1.38×10~9 CFU/g, and the viable counts were 1.03×10~9 CFU/g after storage for 180 days.Conclusion:Spray drying technology can be used for the preparation of Bacillus sp. dhs-330-021 powder with better stability.
引文
[1]卢义龙,王明力,李慧慧,等.喷雾干燥技术在食品工业中的应用现状[J].安徽农业科学, 2015,43(11):32-35.
    [2]周扬,刘力,徐德生,等.纳米喷雾干燥技术用于生地黄低聚糖微粉的制备工艺研究[J].中草药, 2016,47(1):29-34.
    [3]任元元,康建平,黄静,等.喷雾干燥制备魔芋葡甘露低聚糖工艺的研究[J].食品与发酵科技, 2013,49(5):30-34.
    [4] Wurth R, Foerst P, Kulozik U. Development and evaluation of a spray drying microencapsulation process for water-insoluble milk protein capsules[J]. Int Dairy J,2016,61:99-106.
    [5]田智斌,李庆文.含青稞成分肠内营养配方食品的喷雾干燥工艺优化[J].食品与发酵科技, 2017,53(1):56-58.
    [6]时文芳,白榕,吕丽爽,等.喷雾干燥和冷冻干燥莲子蛋白结构及其功能特性的比较[J].食品科学, 2018,39(9):36-41.
    [7]唐辉,钟瑞敏,马金魁,等.冷冻干燥与喷雾干燥对岗稔果粉品质影响的比较[J].食品与机械, 2017,33(3):67-74.
    [8]曾洁,李永幸,洪清林,等.卡拉胶酶固体酶制剂的喷雾干燥制备工艺优化[J].食品工业科技, 2017,38(24):40-46.
    [9]贺娜,于晓晨,于才渊.喷雾干燥技术的应用[J].干燥技术与设备, 2009,7:116-119.
    [10] Keshani S, Daud W R W, Nourouzi M M, et al.Spray drying:an overview on wall deposition, process and modeling[J]. J Food Eng, 2015,146:152-162.
    [11]林文,王志祥.喷雾干燥技术及其在制药工业的应用[J].食品工业科技, 2009,11:36-40.
    [12] Taneja A, Ye A, Sing H. Influence of protein concentration on the stability of oil-in-water emulsions formed with aggregated milk proteins during spray drying[J]. Dairy Sci Technol, 2015,95(3):279-293.
    [13]提伟钢.牛奶喷雾干燥技术研究进展[J].中国乳业,2010,11:54-56.
    [14]傅楠,陈晓东.益生菌在喷雾干燥过程中的活性变化与保护策略[J].化工进展, 2018,37(5):87-93.
    [15]吕嘉枥,张淑娟,董云森,等.乳酸菌抗湿热保护剂的研究[J].西北轻工业学院学报, 2002,4(20):29-33.
    [16]成妮妮.嗜酸乳杆菌抗热保护剂的研究[J].食品研究与开发, 2003,24(6):51-53.
    [17] Garofulic I E, Zoric Z, Pedisic S, et al. Optimization of sour cherry juice spray drying as affected by carrier material and temperature[J]. Food Technol Biotechnol, 2016,54(4):441-449.
    [18] Schuck P, Jeantet R, Bhandari B, et al. Recent advances in spray drying relevant to the dairy industry:a comprehensive critical review[J]. Drying Technol,2016,34(15):1773-1790.