中温固体氧化物燃料电池La_(0.8-x)Bi_xSr_(0.2)FeO_(3-δ)阴极材料研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:La_(0.8-x)Bi_xSr_(0.2)FeO_(3-σ) Cathode Material of Intermediate Temperature Solid Oxide Fuel Cell
  • 作者:王卫杰 ; 张广君 ; 曾凡蓉 ; 王绍荣
  • 英文作者:Wang Weijie;Zhang Guangjun;Zeng Fanrong;Wang Shaorong;College of Chemical Engineering, China University of Mining and Technology;
  • 关键词:IT-SOFC ; La_(0.8-x)Bi_xSr_(0.2)FeO_(3-δ) ; 阴极
  • 英文关键词:IT-SOFC;;La_(0.8-x)Bi_xSr_(0.2)FeO_(3-δ);;cathode
  • 中文刊名:XTXB
  • 英文刊名:Journal of the Chinese Society of Rare Earths
  • 机构:中国矿业大学化工学院;
  • 出版日期:2018-11-06 10:44
  • 出版单位:中国稀土学报
  • 年:2019
  • 期:v.37;No.178
  • 基金:国家自然科学基金项目(51672297)资助
  • 语种:中文;
  • 页:XTXB201902011
  • 页数:8
  • CN:02
  • ISSN:11-2365/TG
  • 分类号:99-106
摘要
通过高温固相法制备出La_(0.8-x)Bi_xSr_(0.2)FeO_(3-δ)(LBSF)阴极粉体和铒稳定氧化铋(ESB)电解质粉体,通过XRD分别确定其成相温度以及相互之间的化学相容性;以LBSF作为阴极, ESB作为电解质,构成LBSF|ESB|LBSF对称电池,利用交流阻抗法测试阴极的极化行为;用扫描电子显微镜观察电池的断面微结构。结果表明:通过固相合成的LBSF阴极材料呈立方钙钛矿结构。在同一温度下,电导率随Bi_2O_3的掺杂量增加而降低;但极化阻抗随着Bi_2O_3的掺杂量增加而降低,当x=0.4时, LBSF(0.4)的极化阻抗达到最小, 650℃时为1.05Ω·cm~2, 900℃时低达0.17Ω·cm~2。研究结果表明:LBSF是良好的固体氧化物燃料电池阴极材料。
        La_(0.8-x)Bi_xSr_(0.2)FeO_(3-σ)(LBSF) powder and erbium oxide stabilized bismuth oxide(ESB) electrolyte powder were prepared by high temperature solid reaction method. The phase structure and the chemical compatibility between each other were determined by XRD analysis. LBSF was used as the cathode, and ESB was used as an electrolyte to form the LBSF|ESB|LBSF symmetric cells. The polarization behavior of the cathode was measured by the AC impedance method; the micro structure of the cell was observed by SEM. The results showed that the LBSF cathode materials synthesized have cubic perovskite structure. The conductivity decreased with the increase of the doping amount of Bi_2O_3, the polarization decreased at the same time. For x=0.4, the polarization impedance of LBSF(0.4) was minimum: 1.05 and 0.17 Ω·cm~2 at 650 and 900 ℃, respectively. The results showed that LBSF is a promising cathode material for solid oxide fuel cell.
引文
[1] Bhalla A S, Guo R, Roy R. The perovskite structure-A review of its role in ceramic science and technology [J]. Mater. Res. Innovations, 2000, 4: 3.
    [2] Steele B C H, Heinzel A. Materials for fuel cell technologies [J]. Nature, 2001, 414: 345.
    [3] Mcintosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells [J]. Chem. Rev., 2004, 104: 4845.
    [4] Brett D J, Atkinson A, Brandon N P, Skinner S J. Intermediate temperature solid oxide fuel cells [J]. Chem. Soc. Rev., 2008, 37: 1568.
    [5] 邵宗平. 中低温固体氧化物燃料电池阴极材料 [J]. 化学进展, 2011, 23: 417.Shao Z P. Cathode material for intermediate and low temperature solid oxide fuel cells [J]. Chemical Progress, 2011, 23: 417.
    [6] Molenda J, Swierczek K. Functional materials for the IT-SOFC [J]. J. Power Sources, 2007, 173: 657.
    [7] Weber A, Ivers-Tiffee E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications [J]. J. Power Sources, 2004, 127: 273.
    [8] Mizusaki J, Sasamoto T, Cannon W R, Bowen H K. Electronic conductivity, seebeck coefficient, and defect structure of La1-xSrxFeO3 (x= 0.1, 0.25) [J]. J. Am. Ceram. Soc., 1983, 66: 247.
    [9] Canfield N L, Meinhardt K D. Development of lanthanum ferrite SOFC cathodes [J]. J. Power Sources, 2003, 113: 1.
    [10] Sun S, Zhu X, Yuan Y. Electrochemical properties of La0.8Sr0.2FeO3-δ -La0.45Ce0.55O2-δ composite cathodes for intermediate temperature SOFC [J]. Solid State Electrochem., 2010, 14: 2257.
    [11] Myung C K, Park S J, Haneda A H. High temperature electrical conductivity of La1-xSrxFeO3-δ (x>0.5) [J]. Solid State Ionics, 1990, 40/41: 239.
    [12] Mizusaki J, Sasamoto T, Cannon W R, Bowen H K. Electronic conductivity, seebeck coefficient, and defect structure of La1-xSrxFeO3 (x= 0.1, 0.25) [J]. J. Am. Ceram. Soc., 1983, 66: 247.
    [13] Bongio E V, Black H, Raszewski F C, dwards D E, Mcconville C J. Microstructural and high-temperature electrical characterization of La1-xSrxFeO3-δ [J]. Electroceram, 2005,14: 193.
    [14] Ren Y,Kungas R,Gorte R J, Deng C. The effect of A-site cation (Ln=La, Pr, Sm) on the crystal structure, conductivity and oxygen reduction properties of Sr-doped ferrite perovskites [J]. Solid State Ionics, 2012, 212: 47.
    [15] Simmer S P, Bonnett J F, Canfield N L, Meinhardt K D, Sprenkle V L. Optimized lanthanum ferrite-based cathodes for Anode-supported SOFCs [J]. Electrochem. Solid-State Lett., 2002, 5: A173.
    [16] 李坦, 张小超, 王凯, 李瑞, 樊彩梅. α,β,γ,δ,ε,η-Bi2O3电子结构和光学性质的第一性原理研究 [J]. 高等学校化学学报, 2016, 37(5): 920.Li T, Zhang X C, Wang K, Li R, Fan C M. First-principles study on electronic structure and optical properties of α,β,γ,δ,ε,η-Bi2O3 [J]. Journal of Chemistry of Colleges and Universities, 2016, 37(5): 920.
    [17] Music D, Konstantinidis S, Sclineider J M. Equilibrium structure of δ-Bi2O3 from first principles [J]. Phys.: Condens. Mat., 2009, 21(17): 175403.
    [18] Li G S, Li L P, Feng S H. An effective synthetic route for a novel electrolyte: nanocrystalline solid solutions of (CeO2)1-x(BiO1.5)x [J]. Adv. Mater., 1999, 11: 146.
    [19] Chen X L, Eysel W. The stabilization of β-Bi2O3 by CeO2 [J]. J.Solid State Chem., 1996, 127: 128.
    [20] Ullmann H, Trofimenko N, Tietz F, St?ver D, Ahmad-Khanlou A. Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes [J]. Solid State Ionics, 2000,138: 79.
    [21] Tu H, Takeda Y, Imanishi N, Yamamoto O. Ln0.4Sr0.6Co0.8Fe0.2O3-δ (Ln=La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells [J]. Solid State Ionics, 1999,117: 277.
    [22] Han W K, Naqyi A H, Gupta M, et al. Small polaron hopping conduction mechanism in Fe doped LaMnO3 [J]. J. Chem. Phys., 2011, 135: 1.
    [23] Steveson J W, Armstrong T R, Carneim R D, et al. Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ (M=Sr,Ba,Ca) [J]. J. Electrochem. Soc., 1996,143: 2722.
    [24] Martinez-Amesti A, Larranaga A, Rodriguez L M, Aguayo A T, Pizarro J L. Reactivity between La(Sr)FeO3 cathode, doped CeO2 interlayer and yttria-stabilized zirconia electrolyte for solid oxide fuel cell applications [J]. J. Power Sources, 2008, 185: 401.
    [25] 武卫明, 张长松, 阎冬, 郑勇, 田大勇, 侯绍刚. 中低温固体氧化物燃料电池中CeO2基电解质隔层制备技术的研究进展 [J]. 中国稀土学报, 2017, 170(6): 687.Wu W M, Zhang C S, Yan D, Zheng Y, Tian D Y, Hou S G. CeO2 based electrolyte in intermediate and low temperature solid oxide fuel cells [J]. Journal of the Chinese Society of Rare Earths, 2017, 170(6): 687.