热处理工艺对CoNiCrMo合金显微组织与耐腐蚀性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of heat treatment on microstructure and corrosion resistance of CoNiCrMo alloy
  • 作者:初雅杰 ; 郝本行 ; 李晓泉 ; 黄磊 ; 李建 ; 许欣童
  • 英文作者:CHU Ya-jie;HAO Ben-xing;LI Xiao-quan;HUANG Lei;LI Jian;XU Xin-tong;Department of Material Engineering, Nanjing Institute of Technology;Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology;Zhuhai Funisi Welding Technology Co Ltd;
  • 关键词:钴基合金 ; 固溶处理 ; 耐腐蚀性 ; 微观组织
  • 英文关键词:Co-based alloys;;solution treatment;;corrosion resistance;;microstructure
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:南京工程学院材料工程学院;江苏省先进结构材料与应用技术重点实验室;珠海市福尼斯焊接技术有限公司江苏分公司;
  • 出版日期:2019-04-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.226
  • 基金:江苏省先进结构材料与应用技术重点实验室(ASMA201610);; 江苏省产业前瞻与共性关键技术(BE2017168)
  • 语种:中文;
  • 页:JSCL201904007
  • 页数:7
  • CN:04
  • ISSN:11-4545/TG
  • 分类号:46-52
摘要
采用光学显微镜(OM)、扫描电镜(SEM)和电化学工作站等研究了不同热处理工艺对CoNiCrMo钴基合金显微组织和耐腐蚀性能的影响。结果表明:随着固溶温度的升高(1000~1200℃),CoNiCrMo合金的树枝晶逐渐溶解并消失,CoNiCrMo合金的耐蚀性能随着固溶温度的升高而降低,固溶温度为1000℃时,合金耐腐蚀性能好。800℃经不同时间时效处理后,析出相先增多后减少,而合金耐腐蚀性则是先降低后升高。热处理工艺对CoNiCrMo合金的微观组织结构和耐腐蚀性能有较大影响。
        The effects of different heat treatment processes on microstructure and corrosion resistance of CoNiCrMo cobalt-based alloy were studied by means of optical microscope(OM), scanning electron microscopy(SEM) and electrochemical workstation. The results show that the dendrite of the CoNiCrMo alloy dissolves and disappears with the increase of solution temperature(1000-1200 ℃), the corrosion resistance of the CoNiCrMo alloy decreases with the increase of solution temperature, and when the solution temperature is 1000 ℃, the corrosion resistance of the alloy is good. After aging at 800 ℃ for different time, the precipitation phase increases first and then decreases, while the corrosion resistance of the alloy decreases first and then increases. The heat treatment process has great influence on the microstructure and corrosion resistance of the CoNiCrMo alloy.
引文
[1] 武学强.新型钴基合金的耐蚀及热加工性能研究[D].鞍山:辽宁科技大学,2016.WU Xue-qiang.Research on the corrosion and hot deformation of the new cobalt-based alloys[D].Anshan:University of Science and Technology Liaoning,2016.
    [2] 史胜凤.医用钴基合金的组织结构及耐腐蚀性能[D].杭州:浙江大学,2006.SHI Sheng-feng.Tissue structure and corrosion resistance of medical cobalt alloy[D].Hangzhou:Zhejiang University,2006.
    [3] Park W W,Kim E K,Jeon J H,et al.Wear of UHMWPE against nitrogen-ion-implanted and NbN-coated Co-Cr-Mo alloy formed by plasma immersion ion implantation and deposition for artificial joints[J].Applied Surface Science,2012,258(20):8228-8233.
    [4] Hiromoto S,Onodera E,Chiba A,et al.Microstrcture and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys[J].Biomaterials,2005,26(24):4912-4923.
    [5] 王忠维.医用钴基合金的生物磨蚀行为研究[D].北京:北京科技大学,2018.WANG Zhong-wei.Study of the bio-tribocorrosion behaviors of cobalt-based biomedical alloy[D].Beijing:University of Science and Technology Beijing,2018.
    [6] 李明喜,何宜柱,孙国雄.激光表面熔覆制备ODSNi基高温合金涂层的凝固组织[J].稀有金属材料与工程,2005,35(2):248-251.LI Ming-xi,HE Yi-zhu,SUN Guo-xiong.Microstructure of laser cladding Co-based alloy on Ni-based superalloy[J].Rare Metal Materials and Engineering,2005,35(2):248-251.
    [7] 张永涛,刘汉源,王昌,等.生物医用金属材料的研究应用现状及发展趋势[J].热加工工艺,2017,46(4):21-26.ZHANG Yong-tao,LIU Han-yuan,WANG Chang,et al.Development trend and research application situation of biomedical metal materials[J].Hot Working Technology,2017,46(4):21-26.
    [8] 任伊宾,杨柯.一种新型血管支架用无镍钴基合金[J].稀有金属材料与工程,2014,43(s1):101-104.REN Yi-bin,YANG Ke.Preliminary study of a new nickel-free cobalt-base alloy forintravascular stent[J].Rare Metal Materials and Engineering,2014,43(s1):101-104.
    [9] 史胜凤,林军,周炳,等.医用钴基合金的组织结构及耐腐蚀性能[J].稀有金属材料与工程,2007,36(1):37-41.SHI Sheng-feng,LIN Jun,ZHOU Bing,et al.Microstructure and corrosion resistance of medical cobalt-based alloyst[J].Rare Metal Materials and Engineering,2007,36 (1):37-41.
    [10] 田文彦,陈庆福.冠脉支架用Co-Cr合金L605管材的特性[J].材料科学与工艺,2007,31(6):797-800.TIAN Wen-yan,CHEN Qing-fu.Characteristics of Co-Cr alloy L605 pipe for coronary stent[J].Materials Science and Technology,2007,31(6):797-800.
    [11] 周炳,史胜凤,王小祥.医用CoCrMoC合金的组织结构及耐磨损性能[J].稀有金属材料与工程,2006,35(1):105-109.ZHOU Bing,SHI Sheng-feng,WANG Xiao-xiang.Microstructures and wear resistance of medical CoCMC alloys[J].Rare Metal Materials and Engineering,2006,35(1):105-109.
    [12] 周炳.医用钴基合金组织结构和磨损性能的研究[D].杭州:浙江大学,2005.ZHOU Bing.Study on the microstructure and wear properties of medical cobalt-based alloys[D].Hangzhou:Zhejiang University,2005.
    [13] Samiee M,Asgari S.Influence of solution treatment on precipitation behavior of a Ni-Co alloy[J].Scripta Materialia,2007,57(2):93-96.
    [14] Otomo T,Matsumoto H,Nomura,et al.Influence of cold-working and subsequent heat-treatment on Young’s modulus and strength of Co-Ni-Cr-Mo alloy[J].Materials Transactions,2010,51(3):434-441.
    [15] Gardner C J,Trisnadi J,Kim T K,et al.Controlled metallic nanopillars for low impedance biomedical electrode[J].Acta Biomaterialia,2014,10(5):2296-2303.
    [16] 李伟雄,许赪,李琼,等.高性能医用钴基合金强化机理的研究进展[J].中国有色金属学报,2016,26(5):1045-1053.LI Wei-xiong,XU Cheng,LI Qiong,et al.Progress on strengthening mechanisms of high performance medical cobalt based alloy[J].The Chinese Journal of Nonferrous Metals,2016,26(5):1045-1053.
    [17] Lu Y J,Guo S,Yang Y,et al.Effect of thermal treatment and fluoride ions on the electrochemical corrosion behavior of selective laser melted CoCrW alloy[J].Journal of Alloys and Compounds,2018,730(5):552-562.
    [18] 牛绍蕊.不锈钢的电化学腐蚀性能研究[D].兰州:兰州理工大学,2010.NIU Shao-rui.Electrochemical corrosion behavior of stainless steel[D].Lanzhou:Lanzhou University of Technology,2010.
    [19] 胡丽华,杜楠,王梅丰,等.1Cr18Ni9Ti不锈钢在酸性NaCl溶液中的点蚀电化学特征[J].失效分析与预防,2006,1(3):6-10.HU Li-hua,DU Nan,WANG Mei-feng,et al.Pitting electrochem ical features of 1Cr18Ni9Ti stainless steel in acid ic NaCl solution[J].Failure Analysis and Prevention,2006,1(3):6-10.
    [20] Liu C,Zhou Z F,Li K Y.Improved corrosion resistance of CoCrMo alloy with self-passivation ability facilitated by carbon ion implantation[J].Electrochimica Acta,2017,241(1):331-340