ARM架构下Turbo译码时延性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Turbo decoding delay performance under ARM architecture
  • 作者:潘超 ; 陈阳杰 ; 谭国平 ; 李岳衡
  • 英文作者:Pan Chao;Chen Yangjie;Tan Guoping;Li Yueheng;Institute of Communication and Information Systems,Hohai University;
  • 关键词:Turbo码 ; 空中接口平台 ; 译码时延 ; 交织器 ; 并行译码Log-MAP
  • 英文关键词:Turbo code;;open airinterface;;decoding delay;;interleaver;;parallel decoding Log-MAP
  • 中文刊名:DZCL
  • 英文刊名:Electronic Measurement Technology
  • 机构:河海大学计算机与信息学院通信与信息系统研究所;
  • 出版日期:2019-04-08
  • 出版单位:电子测量技术
  • 年:2019
  • 期:v.42;No.315
  • 语种:中文;
  • 页:DZCL201907020
  • 页数:5
  • CN:07
  • ISSN:11-2175/TN
  • 分类号:119-123
摘要
为了适应基于5G的物联网技术的快速发展,以ARM架构作为物联网终端设备的构想具有重要的实际应用意义。但ARM架构能否满足5G物联网终端性能要求仍然不明确,特别是终端对于海量数据的处理时延将直接影响其实际可行性。鉴于此,基于开源的空中接口平台(OAI),本文重点研究了采用ARM架构的Turbo译码时延问题,并与x86架构计算机进行对比。测试结果表明,基于ARM架构的译码延时要比基于x86架构的译码延时长20%~25%,鉴于两种架构性能上的差异,这一延时差距符合预期。
        In order to adapt to the rapid development of IoT technologies based 5 G, the idea of using the ARM architecture as a terminal device for IoT has important practical significance. However, it is still unclear whether the ARM architecture can meet the 5 G IoT terminal performance requirements. In particular, the processing delay of terminal for massive data will directly affect its feasibility.In view of this, based on the open air interface(OAI), this paper focuses on the Turbo decoding delay problem using the ARM architecture and compares it with the x86 architecture computer.The results show that the decoding delay based on the ARM architecture is 20%~25% longer than that of x86 architecture. Given the difference in the performance of the two architectures, this gap is in line with expectations.
引文
[1] BERROU C,GLAVIEUX A,THITIMAJSHIMA P.Near Shannon limit error-correcting coding and decoding:Turbo-codes(1)[C].IEEE International Conference on Communications'93(ICC'93),1993:1064-1070.
    [2] BERROU C,GLAVIEUX A.Near optimum error correcting coding and decoding:Turbo-codes[J].IEEE Transactions on Communications,1996,44(10):1261-1271.
    [3] BURR A G,WHITE G P.Performance of turbo-coded OFDM[C].IET,2016:8/1-8/8.
    [4] GOFF S L,GLAVIEUX A,BERROU C.Turbo-codes and high spectral efficiency modulation[C].Communications(ICC '94),1994:645-649.
    [5] GAMAL H E,HAMMONS A R.Analyzing the turbo decoder using the Gaussian approximation[J].IEEE Transactions on Information Theory,2001,47(2):671-686.
    [6] BOHORQUEZ R G,NOUR C A,DOUILLARD C.Improving Turbo codes for 5G with parity puncture-constrained interleavers[C].International Symposium on Turbo Codes & Iterative Information Processing,IEEE,2016:151-155.
    [7] TONNELLIER T,LEROUX C,GAL B L,et al.Lowering the error floor of Turbo codes with CRC verification[J].IEEE Wireless Communications Letters,2016,5(4):404-407.
    [8] 施乐平,杨征宇,马宪民,等.ARM嵌入式系统综述[J].中国测试,2012,38(S1):14-16.
    [9] SEAL D.ARM Architecture Reference Manual[M].Alpha architecture reference manual,Digital Press,2000.
    [10] 金瑶,陈磊萍.ARM指令集与x86指令集之比较[J].成功:教育版,2007(10):215-215.
    [11] SESIA M,TOUFIK M,BAKER M.LTE,the UMTS long term evolution:from theory to practice [M].Chichester,West Sussex,U.K.;Hoboken,N.J.:Wiley,2011.
    [12] YOSHIKAWA H.On the bit error probability for constant log-MAP decoding of convolutional codes[C].International Symposium on Information Theory and ITS Applications,IEEE,2017.