热处理温度对利用电解锰渣和页岩制备发泡陶瓷的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Heat Treatment Temperature on Preparation of Foamed Ceramic by Electrolytic Manganese Residue and Shale
  • 作者:成昊 ; 叶芬 ; 石维 ; 吴思展 ; 冷森林
  • 英文作者:CHENG Hao;YE Fen;SHI Wei;WU Sizhan;LENG Senlin;College of Material and Chemical Engineering,Tongren University;
  • 关键词:电解锰渣 ; 铜仁页岩 ; 高温发泡陶瓷 ; SiC
  • 英文关键词:Electrolytic manganese residue;;Tongren shale;;High temperature foamed ceramic;;SiC
  • 中文刊名:ZGTC
  • 英文刊名:China Ceramics
  • 机构:铜仁学院材料与化学工程学院;
  • 出版日期:2019-03-05
  • 出版单位:中国陶瓷
  • 年:2019
  • 期:v.55;No.364
  • 基金:贵州省科技计划项目“黔科合LH字[2016]7291号”;; 贵州省教育厅科技拔尖人才支持项目“黔教合KY字[2016]107号”;贵州省教育厅青年科技人才成长项目“黔教合KY字[2018]340”
  • 语种:中文;
  • 页:ZGTC201903008
  • 页数:5
  • CN:03
  • ISSN:36-1090/TQ
  • 分类号:44-48
摘要
以贵州铜仁某厂电解锰渣和铜仁页岩为主要原料,SiC为高温发泡剂制备高温发泡陶瓷,研究了热处理温度对发泡陶瓷的膨胀率、体积密度、吸水率、气孔率及物相的影响。实验结果表明:电解锰渣的添加量为60%,页岩为20%,热处理温度为1170℃样品性能最佳,体积密度为0.33 g/cm~3,吸水率222.79%,气孔率为73.52%,厚度发泡率为118.15%,主晶相为辉石。研究发现配方中氧化铝和氧化硅的含量对发泡陶瓷的膨胀率和体积密度影响显著,氧化铝和氧化硅含量较低时能在较低温度下制得发泡陶瓷。研究为电解锰渣的资源化综合利用探索了一条新途径。
        High temperature foamed ceramic was prepared with electrolytic manganese residue Tongren shale and SiC as high-temperature foaming agent. The effects of heat treatment temperature on expansion ratio, bulk density, water absorption, porosity and phase were investigated. The results showed that the amount of electrolytic manganese residue was 60%, Tongren shale was 20%, excellent comprehensive performance could be obtained when heat treatment temperature was 1170 ℃. Under this circumstance, the bulk density, water absorption, porosity, thickness expansion ratio and phase were 0.33 g/cm~3, 222.79%,73.52%, 118.15% and pyroxene. It was found that the content of alumina and silica in the formulation had a significant effect on the expansion ratio and bulk density of the foamed ceramic. When the content of alumina and silica was low, the foamed ceramic could be produced at a lower temperature.This study explored a new approach for the comprehensive utilization of electrolytic manganese residue.
引文
[1]佚名.贵州铜仁探获一特大型富锰矿床[J].铁路采购与物流,2018(4):66.
    [2]成昊,阴泽江,郑成勇,等.电解锰渣在制砖应用中的研究现状与展望[J].山东化工,2017,46(13):46-48.
    [3]吴霜,王家伟,刘利,等.电解锰渣综合利用评述[J].无机盐工业,2016,48(4):22-25.
    [4]叶芬,车龙,刘勇闯,等.发泡陶瓷的研究现状与展望[J].广州化工,2017(15):9-10,41.
    [5]卢志华,李呈顺,马育栋.多孔氧化铝陶瓷制备技术研究进展[J].中国陶瓷,2018,54(2):1-7.
    [6]胡春燕,于宏兵.电解锰渣制备陶瓷砖[J].硅酸盐通报,2010,29(1):112-115.
    [7]李家驹.陶瓷工艺学[M].北京:轻工业出版社,2007.
    [8]莫理京.绝热工程技术手册[M].北京:中国石化出版社,1997.
    [9]伍洪标.无机非金属材料实验[M].北京:化学工业出版社,2002.
    [10]完么东智,李玉香,谭宏斌.电解锰渣制备多孔陶瓷及性能表征[J].中国陶瓷,2018,54(4):51-56.
    [11]李家驹.陶瓷工艺学[M].北京:轻工业出版社,2007.
    [12]牛新会,王艺慈,焦艳虎,等.高炉渣微晶玻璃的析晶热力学分析[J].材料热处理学报,2015,36(1):6-10.
    [13]毛彩彩,石林.改性透辉石对饮用水中余氯的吸附机理[J].环境工程学报,2017(2):818-826.