低温等离子放电与催化剂结合方式对生物油提质的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Compound Modes of Plasma Discharge and Catalysts on Bio-oil Upgrading
  • 作者:樊永胜 ; 王佳伟 ; 朱雷 ; 樊乐乐 ; 赵卫东 ; 纪玮
  • 英文作者:FAN Yongsheng;WANG Jiawei;ZHU Lei;FAN Lele;ZHAO Weidong;JI Wei;School of Automotive Engineering,Yancheng Institute of Technology;Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,Yancheng Institute of Technology;School of Automotive and Traffic Engineering,Jiangsu University;
  • 关键词:生物油 ; 催化提质 ; Ti/HZSM-5 ; 结合方式
  • 英文关键词:bio-oil;;catalytic upgrading;;Ti/HZSM-5;;compound mode
  • 中文刊名:NYJX
  • 英文刊名:Transactions of the Chinese Society for Agricultural Machinery
  • 机构:盐城工学院汽车工程学院;盐城工学院江苏省新型环保重点实验室;江苏大学汽车与交通工程学院;
  • 出版日期:2019-02-19 10:53
  • 出版单位:农业机械学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金项目(51806186);; 江苏省动力机械清洁能源与应用重点实验室开放基金项目(QK17007);; 盐城工学院引进人才校级科研基金项目(XJ201708)和盐城工学院汽车工程学院大学生创新训练计划项目
  • 语种:中文;
  • 页:NYJX201904033
  • 页数:8
  • CN:04
  • ISSN:11-1964/S
  • 分类号:297-304
摘要
为提高生物油的提质效率,在HZSM-5及Ti/HZSM-5催化的基础上引入低温等离子体技术,分析等离子体协同催化(PSC)和等离子体增强催化(PEC)等不同结合方式对精制生物油产率、理化特性、化学组成及催化剂稳定性的影响。结果表明,Ti改性和等离子体放电使精制生物油产率逐渐降低,Ti/HZSM-5(PEC)催化所得精制生物油产率较低,生物油质量分数为13. 84%,但烃类物质的分布得到明显改善;而Ti/HZSM-5(PSC)催化所得精制生物油中烃类总含量略低,但高氢碳比产物相对含量达68. 89%,理化特性较优,高位热值达到36. 52 MJ/kg; PSC方法等离子体对催化剂表面的冲击作用较强,使催化剂结焦量相对较低,Ti/HZSM-5(PSC)的结焦量较低,积分面积仅为5. 24%,催化稳定性较高。综合而言,基于Ti/HZSM-5的催化作用,PSC方法优于PEC方法。
        In order to effectively improve the bio-oil upgrading efficiency,the non-thermal plasma technology was introduced to conduct the online upgrading of bio-oil based on the HZSM-5 and Ti/HZSM-5 catalysis. The effects of different compound modes,including the plasma synergistic catalysis( PSC) and the plasma enhanced catalysis( PEC),on the refined bio-oil yields,physicochemical properties,compositions and catalyst stability were investigated in detail. The results showed that the production of refined bio-oil was gradually decreased with the introduction of Ti ions and plasma-discharge technology,in which the yield of refined bio-oil obtained from Ti/HZSM-5( PEC) catalysis was only13. 84%,but the distribution of hydrocarbons was obviously improved. In comparison, the total hydrocarbon content in the refined bio-oil obtained from Ti/HZSM-5( PSC) catalysis was slightly lower,but the product ratio with higher ratio of hydrogen to carbon was high as 68. 89%,so its physicochemical properties were better and the high heating value was up to 36. 52 MJ/kg. In the PSC method,the impact of plasma on the surface of catalyst was stronger,which made the coking rate of catalyst relatively low,so the coking content of Ti/HZSM-5 employed in the PSC method was the lowest( integral area of 5. 24%)and the catalytic stability was the highest. In general,the PSC method was superior to the PEC method based on the catalytic action of Ti/HZSM-5.
引文
[1]李小华,胡超,张小雷,等.La改性MCM-41在线催化提质生物油研究[J/OL].农业机械学报,2018,49(7):296-302.LI Xiaohua,HU Chao,ZHANG Xiaolei,et al.In-suit catalytic online upgrading of bio-oil over La/MCM-41[J/OL].Transactions of the Chinese Society for Agricultural Machinery,2018,49(7):296-302.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?file_no=20180735&flag=1.DOI:10.6041/j.issn.1000-1298.2018.07.035.(in Chinese)
    [2]GALADIMA A,MURAZA O.In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production:a review[J].Energy Conversion and Management,2015,105:338-354.
    [3]谭顺,张志军,孙剑平,等.HZSM-5生物质催化裂解的近期研究进展[J].催化学报,2013,34(4):641-650.TAN Shun,ZHANG Zhijun,SUN Jianping,et al.Recent progress of catalytic pyrolysis of biomass by HZSM-5[J].Chinese Journal of Catalysis,2013,34(4):641-650.(in Chinese)
    [4]GUO X Y,ZHENG Y,ZHANG B H,et al.Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil[J].Biomass and Bioenergy,2009,33(10):1469-1473.
    [5]ZHANG H Y,SHAO S S,XIAO R,et al.Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates[J].Energy&Fuels,2014,28(1):52-57.
    [6]LI X H,CHEN L,FAN Y S,et al.Study on preparation of refined oil by upgrading of pyrolytic vapors using Zn-P/HZSM-5zeolite[J].Journal of Fuel Chemistry and Technology,2015,43(5):567-574.
    [7]CAI Y X,FAN Y S,LI X H,et al.Preparation of refined bio-oil by catalytic transformation of vapors derived from vacuum pyrolysis of rape straw over modified HZSM-5[J].Energy,2016,102:95-105.
    [8]ILIOPOULOU E F,STEFANIDIS S D,KALOGIANNIS K G,et al.Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J].Applied Catalysis B:Environmental,2012,127(17):281-290.
    [9]VESE A,PUERTOLAS B,CALLEN M S,et al.Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites:effect of different metal cations on the bio-oil final properties[J].Miscroporous and Mesoporous Materials,2015,209:189-196.
    [10]NOZAKI T,OKAZAKI K.Non-thermal plasma catalysis of methane:principles,energy efficiency,and applications[J].Catalysis Today,2013,211:29-38.
    [11]PATIL B S,CHERKASOV N,LANG J,et al.Low temperature plasma-catalytic NOxsynthesis in a packed DBD reactor:effect of support materials and supported active metal oxides[J].Applied Catalysis B:Environmental,2016,194:123-133.
    [12]SHEN C S,SUN D K,YANG H S.Methane coupling in microwave plasma under atmospheric pressure[J].Journal of Natural Gas Chemistry,2011,20(4):449-456.
    [13]ASFORD B,TU X.Non-thermal plasma technology for the conversion of CO2[J].Current Opinion in Green&Sustainable Chemistry,2017(3):45-49.
    [14]JOLIBOIS J,TAKASHIMA K,MIZUNO A.Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment:NOxremoval[J].Journal Electrostatics,2012,70(3):300-308.
    [15]MUSTAFA M F,FU X D,LID Y J,et al.Volatile organic compounds(VOCs)removal in non-thermal plasma double dielectric barrier discharge reactor[J].Journal of Hazardous Materials,2018,347:317-324.
    [16]RAHIMPOUR M R,JAHANMIRI A,SHIRZAI M M,et al.Combination of non-thermal plasma and heterogeneous catalysis for methane and hexadecane co-cracking:effect of voltage and catalyst configuration[J].Chemical Engineering Journal,2013,219(7):245-253.
    [17]EMEIS C A.Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J].Journal of Catalysis,1993,141(2):347-354.
    [18]FAN Y S,ZHAO W D,SHAO S S,et al.Promotion of the vapors from biomass vacuum pyrolysis for biofuels under nonthermal Plasma Synergistic Catalysis(NPSC)system[J].Energy,2018,142:462-472.
    [19]KGELSCHATZ U,ELIASSON B,HIRTH M.Ozone generation from oxygen and air:discharge physics and reaction mechanisms[J].Ozone-Science&Engineering,1988,10(4):367-377.
    [20]赵卫东,赖志豪,蔡忆昔,等.低温等离子体协同HZSM-5在线催化裂解提质油菜秸秆热解油[J].林产化学与工业,2016,36(6):9-15.ZHAO Weidong,LAI Zhihao,CAI Yixi,et al.Upgrading of rape straw pyrolytic bio-oil using non-thermal plasma assisted by HZSM-5 catalytic cracking[J].Chemistry and Industry of Forest Products,2016,36(6):9-15.(in Chinese)
    [21]樊永胜,蔡忆昔,李小华,等.樟木木屑真空热解工艺的响应面法优化及生物油组分分析[J].林产化学与工业,2014,34(6):29-36.FAN Yongsheng,CAI Yixi,LI Xiaohua,et al.Vacuum pyrolysis of camphorwood sawdust optimized by response surface methodology and bio-oil composition analysis[J].Chemistry and Industry of Forest Products,2014,34(6):29-36.(in Chinese)
    [22]CHEN N Y,DEGNAN T F,KOENING L R.Liquid fuel from carbohydrates[J].Chemical Technology,1986,16(8):506-511.
    [23]LI X F,SHEN B J,XU C M.Interaction titanium and iron oxide with ZSM-5 to tune the catalytic cracking of hydrocarbons[J].Applied Catalysis A:General,2010,375(2):222-229.
    [24]CHUANG W C,CHANG M B.Review of catalysis and plasma performance on dry reforming of CH4and possible synergistic effects[J].Renewable&Sustainable Energy Reviews,2016,62:13-31.
    [25]FANCHIANG W L,LIN Y C.Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J].Applied Catalysis A:General,2012,419-420:102-110.
    [26]CHEN H L,LEE H M,CHEN S H,et al.Review of plasma catalysis on hydrocarbon reforming for hydrogen productioninteraction,integration,and prospects[J].Applied Catalysis B:Environmental,2008,85(1):1-9.