新型传感材料与器件研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress in Advanced Sensing Materials and Related Devices
  • 作者:屠海令 ; 赵鸿滨 ; 魏峰 ; 张青 ; 樊彦艳 ; 杜军
  • 英文作者:Tu Hailing;Zhao Hongbin;Wei Feng;Zhang Qingzhu;Fan Yanyan;Du Jun;State Key Laboratory of Advanced Materials for Smart Sensing,General Research Institute for Nonferrous Metals;
  • 关键词:传感材料 ; 传感器件 ; 石墨烯 ; 有机半导体 ; 生物传感 ; 微机电系统
  • 英文关键词:sensing materials;;sensing devices;;graphene;;organic semiconductors;;biosensors;;micro-electro-mechanical(MEMS)
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:北京有色金属研究总院智能传感功能材料国家重点实验室;
  • 出版日期:2018-12-07 14:12
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.274
  • 基金:国家国际科技合作专项项目(2015DFA00730)资助
  • 语种:中文;
  • 页:ZXJS201901001
  • 页数:24
  • CN:01
  • ISSN:11-2111/TF
  • 分类号:4-27
摘要
新型传感技术融合了材料科学、微纳电子技术、生物技术等学科,是人工智能、精准医疗、新能源等战略前沿的先导和基础,也是智慧城市、智慧医疗等物联网应用的技术关键。智能化、微型化、多功能化、低功耗、低成本、高灵敏度、高可靠性是新型传感器件的发展趋势和主要研究方向。新型传感器件的传感性能很大程度上取决于传感材料的化学成分、表面修饰、传感层微观结构和完整性等因素。近年来,新型传感材料与器件的研究方兴未艾,为现代传感技术的深入开发与应用带来了新的机遇。本文综述了新型传感材料,包括硅纳米线、石墨烯、碳纳米管、二维材料、金属有机框架材料、水凝胶材料以及有机半导体材料等在力学传感、声学传感、生物传感、爆炸物监测等方面的应用。讨论了微机电系统(MEMS)和纳机电系统(NEMS)传感器技术,以及柔性可穿戴传感器相关材料、器件结构和制造方法的最新进展。
        New sensing technology, which combines materials science, micro-nano-electronics and biotechnology, is regarded as the foundation and strategic frontier of the artificial intelligence, precision medical treatment and new energy technologies. It is also key technique for Internet of Things(IoT) applications including smart cities, smart health care systems. As new sensing technology develops towards intelligent, miniaturized, high sensitive and multi-functional stage, the major scientific research focuses on reducing micro power consumption and cost, increasing high reliability and performance. Previous study indicated that the sensor performance was largely influenced by the chemical composition, surface modification and microstructural morphology of the sensing material. In recent years, new materials and new devices were in the ascendant and had brought new opportunities to the in-depth development and application of modern sensor technology. In this paper, the current research and development of sensing materials including silicon nanowires, graphene, carbon nanotubes, two-dimensional materials, metal organic framework materials, water gel materials and organic semiconductors were summarized. The device applications of these materials to mechanics, acoustic sensor, biological sensing, explosives monitoring were comprehensively reviewed. Finally, the latest research progress in wearable sensoring and the development strategy of micro-electro-mechanical(MEMS) and nano-electro-mechanical system(NEMS) sensors were prospected.
引文
[1] White Paper on China′s Sensor Industry Development [M]. Beijing: Institute of Electronic Science and Technology Information. Ministry of Industry and Information Technology, 2014. 1.(中国传感器产业发展白皮书 [M]. 北京: 工业和信息化部电子科学技术情报研究所, 2014. 1.)
    [2] Wang Y L, Wang W Y, Li X X, Jiao J W, Lu D R, Xiong B, Luo L, Wu Y M, Li T, Yang J Y. Work inspiration of the state key laboratory of transducer technology for 16 years [A]. 8th Sensors and Transducers Conference of China Proceedings [C]. Beijing: China Instrument and Control Society, 2003. 1.(王跃林, 王渭源, 李昕欣, 焦继伟, 陆德仁, 熊斌, 罗乐, 吴亚明, 李铁, 杨建义. 传感技术国家联合重点实验室十六年工作启示 [A]. 第八届敏感元件与传感器学术会议论文集 [C]. 北京: 中国仪器仪表学会, 2003. 1. )
    [3] Liu J, Liu D R, Han B J. Fundamentals of Sensors and Application [M]. Xi′an: Xidian University Press, 2013. 1.(刘靳, 刘笃仁, 韩保君. 传感器原理及应用技术 [M]. 西安: 西安电子科技大学出版社, 2013. 1.)
    [4] Farina D, Vujaklija I, Sartori M, Kapelner T, Negro F, Jiang N, Bergmeister K, Andalib A, Principe J, Aszmann O C. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation [J]. Nature Biomedical Engineering, 2017, 1(2): 0025.
    [5] Moseley P T, Crocker J. Sensor Materials [M]. CRC Press, 1996. 1.
    [6] Feng S L, Wang W Y, Wang Y L, Zhu X R. Micro system technology [J]. Scientific Chinese, 2003, (9): 26.(封松林, 王渭源, 王跃林, 祝向荣. 微系统技术 [J]. 科学中国人, 2003, (9): 26.)
    [7] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279(5348): 208.
    [8] Fontcuberta i M A, Arbiol J, Prades J D, Cirera A, Morante J R. Synthesis of silicon nanowires with wurtzite crystalline structure by using standard chemical vapor deposition [J]. Advanced Materials, 2007, 19(10): 1347.
    [9] Pui T S, Agarwal A, Ye F, Tou Z Q, Huang Y, Chen P. Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays [J]. Nanoscale, 2009, 1(1): 159.
    [10] He R, Yang P. Giant piezoresistance effect in silicon nanowires [J]. Nature Nanotechnology, 2006, 1(1): 42.
    [11] Reck K, Richter J, Hansen O, Thomsen E V. Piezoresistive effect in top-down fabricated silicon nanowires [A]. 21st International Conference on Micro Electro Mechanical Systems (MEMS) [C]. Arizona: IEEE, 2008. 1.
    [12] Passi V, Ravaux F, Dubois E, Raskin J P. Backgate bias and stress level impact on giant piezoresistance effect in thin silicon films and nanowires [A]. 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS) [C]. Hong Kong: IEEE, 2010. 464.
    [13] Nghiêm T T, Aubry F V, Chassat C, Bosseboeuf A, Dollfus P. Giant piezoresistance effect in p-type silicon [A]. 2010 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) [C]. Bologna: IEEE, 2010. 321.
    [14] Bui T T, Dao D V, Toriyama T, Sugiyama S. Evaluation of the piezoresistive effect in single crystalline silicon nanowires [A]. 2009 IEEE Sensors [C]. Christchurch: IEEE, 2009. 41.
    [15] Dao D V, Toriyama T, Sugiyama S. Noise and frequency analyses of a miniaturized 3-DOF accelerometer utilizing silicon nanowire piezoresistors [A]. 2004IEEE Sensors [C].Vienna: IEEE, 2004. 1464.
    [16] Fernández-Regúlez M, Plaza J A, Lora-Tamayo E, San Paulo A. Lithography guided horizontal growth of silicon nanowires for the fabrication of ultrasensitive piezoresistive strain gauges [J]. Microelectronic Engineering, 2010, 87(5): 1270.
    [17] Lou L, Park W T, Zhang S, Lim L S, Kwong D L, Lee C. Characterization of silicon nanowire embedded in a MEMS diaphragm structure within large compressive strain range [J]. IEEE Electron Device Letters, 2011, 32(12): 1764.
    [18] Cui Y, Wei Q, Park H, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001, 293(5533): 1289.
    [19] Hahm J I, Lieber C M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J]. Nano Letters, 2004, 4(1): 51.
    [20] Mu L, Droujinine I A, Lee J, Wipf M, Davis P, Adams C, Reed M A. Nanoelectronic platform for ultrasensitive detection of protein biomarkers in serum using DNA amplification [J]. Analytical Chemistry, 2017, 89(21): 11325.
    [21] Zafar S, D′Emic C, Jagtiani A, Kratschmer E, Miao X, Zhu Y, Mo R, Sosa N, Hamann H F, Shahidi G, Rielet H. Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics [J]. ACS Nano, 2018, 12(7): 6577.
    [22] Zhou Q, Zettl A. Electrostaticgraphene loudspeaker [J]. Applied Physics Letters, 2013, 102(22): 223109.
    [23] Zhou Q, Zheng J, Onishi S, Crommie M F, Zettl A. Graphene electrostatic microphone and ultrasonic radio [J]. Proceedings of the National Academy of Sciences, 2015, 112(29): 8942.
    [24] Bae S H, Kahya O, Sharma B K, Kwon J, Cho H J, Ozyilmaz B, Ahn J H. Graphene-P (VDF-TrFE) multilayer film for flexible applications [J]. ACS Nano, 2013, 7(4): 3130.
    [25] Xu S C, Man B Y, Jiang S Z, Chen C S, Yang C, Liu M, Zhang C. Flexible and transparent graphene-based loudspeakers[J]. Applied Physics Letters, 2013, 102(15): 151902.
    [26] Tao L Q, Tian H, Liu Y, Ju Z Y, Pang Y, Chen Y Q, Wang D Y, Tian X G, Yan J C, Deng N Q, Yang Y, Ren L T. An intelligent artificial throat with sound-sensing ability based on laser induced graphene [J]. Nature Communications, 2017, 8: 14579.
    [27] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Ahn J H. Wafer-scalesynthesis and transfer of graphene films [J]. Nano Letters, 2010, 10(2): 490.
    [28] Wang Y, Yang R, Shi Z W, Zhang L, Shi D X, Wang E G, Zhang G Y. Super-elasticgraphene ripples forflexible strain sensors [J]. ACS Nano, 2011, 5(5): 3645.
    [29] Zhao J, He C L, Yang R, Shi Z W, Cheng M, Yang W, Xie G B, Wang D M, Shi D X, Zhang G Y. Ultra-sensitive strain sensors based on piezoresistive nanographene films [J]. Applied Physics Letters, 2012, 101(6): 063112.
    [30] Fu X W, Liao Z M, Zhou J X, Zhou Y B, Wu H C, Zhang R, Jing G Y, Xu J, Wu X S, Guo W L, Yu D P. Strain dependent resistance in chemical vapor deposition grown graphene [J]. Applied Physics Letters, 2011, 99(21): 213107.
    [31] Smith A D, Niklaus F, Paussa A, Vaziri S, Fischer A C, Sterner M, Forsberg F, Delin A, Esseni D, Palestri P, Ostling M, Lemme M C. Electromechanical piezoresistive sensing in suspended graphene membranes [J]. Nano Letters, 2013, 13(7): 3237.
    [32] Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design [J]. Advanced Materials, 2013, 25(46): 6692.
    [33] Pang Y, Zhang K, Yang Z, Jiang S, Ju Z, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity [J]. ACS Nano, 2018, 12(3): 2346.
    [34] Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P. Ultrafast graphene photo detector [J]. Nature Nanotechnology, 2009, 4(12): 839.
    [35] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M,Arquer, F P G, Gatti F, Koppens F H. Hybrid graphene-quantum dot phototransistors with ultrahigh gain [J]. Nature Nanotechnology, 2012, 7(6): 363.
    [36] Freitag M, Low T, Xia F, Avouris P. Photoconductivity of biased graphene [J]. Nature Photonics, 2013, 7(1): 53.
    [37] Wang X, Cheng Z, Xu K, Tsang H K, Xu J B. High-responsivity graphene/silicon-heterostructure waveguidephotodetectors [J]. Nature Photonics, 2013, 7(11): 888.
    [38] Dong X, Shi Y, Huang W, Chen P, Li L J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets [J]. Advanced Materials, 2010, 22(14): 1649.
    [39] Zhang M, Liao C, Yao Y, Liu Z, Gong F, Yan F. High-performance dopamine sensors based on whole-graphene solution-gated transistors [J]. Advanced Functional Materials, 2014, 24(7): 978.
    [40] Lipani L, Dupont B G R, Doungmene F, Marken F, Tyrrell R M, Guy R H, Ilie A. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform [J]. Nature Nanotechnology, 2018, 13: 504.
    [41] Alwarappan S, Joshi R K, Ram M K, Kumar A. Electron transfer mechanism of cytochrome c at graphene electrode[J]. Applied Physics Letters, 2010, 96(26): 263702.
    [42] Unnikrishnan B, Palanisamy S, Chen S M. A simple electrochemical approach to fabricate a glucose biosensor based on grapheme-glucose oxidase biocomposite [J]. Biosensors and Bioelectronics, 2013, 39(1): 70.
    [43] Sun W, Hou F, Gong S, Han L, Wang W, Shi F, Xi J W, Wang X L, Li G. Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode [J]. Sensors and Actuators B: Chemical, 2015, 219: 331.
    [44] Cui M, Xu B, Hu C, Shao H B, Qu L. Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode [J]. Electrochimica Acta, 2013, 98: 48.
    [45] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6(9): 652.
    [46] Varghese S S, Lonkar S, Singh K K, Swaminathan S, Abdala A. Recent advances in graphene based gas sensors [J]. Sensors and Actuators B: Chemical, 2015, 218: 160.
    [47] Yuan W, Shi G. Graphene-based gas sensors [J]. Journal of Materials Chemistry A, 2013, 1(35): 10078.
    [48] Sun J, Muruganathan M, Mizuta H. Room temperature detection of individual molecular physisorption using suspended bilayer graphene [J]. Science advances, 2016, 2(4): e1501518.
    [49] Williams J R, DiCarlo L, Marcus C M. Quantum Hall effect in a gate-controlled pn junction of graphene [J]. Science, 2007, 317(5838): 638.
    [50] Xu H, Huang L, Zhang Z, Chen B, Zhong H, Peng L M. Flicker noise and magnetic resolution of graphene hall sensors at low frequency [J]. Applied Physics Letters, 2013, 103(11): 112405.
    [51] Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng L M. Batch-fabricated high-performance graphene Hall elements [J]. Scientific Reports, 2013, 3: 1207.
    [52] Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng L M. Ultra-sensitive graphene hall elements [J]. Applied Physics Letters, 2014, 104(18): 183106.
    [53] Luo W, Zhao T, Li Y H, Wei J, Xu P C, Li X X, Wang Y W, Zhang W Q, Elzatahry A A, Alghamdi A, Deng Y C, Wang L J, Jang W, Liu Y, Kong B, Zhao D Y. A micelle fusion-aggregation assembly approach to mesoporous carbon materials with rich active sites for ultrasensitive ammonia sensing [J]. Journal of the American Chemical Society, 2016, 138(38): 12586.
    [54] Harris P J F. Carbon Nanotube Science: Synthesis, Properties and Applications [M]. Cambridge: Cambridge University Press, 2009. 1.
    [55] Chandrasekhar P. CNT Applications in Sensors and Actuators [M]. Berlin: Springer, 2018. 53.
    [56] Kong J, Franklin N R, Zhou C W, Chapline M G, Peng S, Cho K, Dai H. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287(5453): 622.
    [57] Goldoni A, Larciprete R, Petaccia L, Lizzit S. Single-wall carbon nanotube interaction with gases: sample contaminants and environmental monitoring [J]. Journal of American Chemical Society, 2003, 125(37): 11329.
    [58] Kumar M K, Ramaprabhu S. Palladium dispersed multiwalled carbon nanotube based hydrogen sensor for fuel cell applications [J]. International Journal of Hydrogen Energy, 2007, 32(13): 2518.
    [59] Penza M, Rossi R, Alvisi M, Cassano G, Signore M A, Serra E, Giorgi R. Pt- and Pd- nanoclusters functionalized carbon nanotubes networked films for sub-ppm gas sensors[J]. Sensors and Actuators B: Chemical, 2008, 135(1): 289.
    [60] Kim Y L, Jung H Y, Park S, Li B, Liu F Z, Hao J, Kwon Y, Jung Y J, Kar S. Voltage-switchable photocurrents in single-walled carbon nanotube-silicon junctions for analog and digital optoelectronics [J]. Nature Photonics, 2014, 8(3): 239.
    [61] Lu R, Christianson C, Kirkeminde A, Ren S, Wu J. Extraordinary photocurrent harvesting at type-II heterojunction interfaces: toward high detectivity carbon nanotube infrared detectors [J]. Nano Letters, 2012, 12(12): 6244.
    [62] Barone P W, Baik S, Heller D A, Strano M S. Near-infrared optical sensors based on single-walled carbon nanotubes [J]. Nature Materials, 2015, 4(1): 86.
    [63] Huang Z, Gao M, Pan T, Wei X, Chen C, Lin Y. Interface engineered carbon nanotubes with SiO2 for flexible infrared detectors [J]. Applied Surface Science, 2017, 413: 308.
    [64] Lipomi D J, Vosgueritchian M, Tee B C, Hellstrom S L, Lee J A, Fox C H, Bao Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes [J]. Nature Nanotechnology, 2011, 6(12): 788.
    [65] Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba D N, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection [J]. Nature Nanotechnology, 2011, 6(5): 296.
    [66] Zhang S, Zhang H, Yao G, Liao F, Gao M, Huang Z, Li K Y, Lin Y. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites [J]. Journal of Alloys and Compounds, 2015, 652: 48.
    [67] Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C H, Sun J M, Hu W G, Wang Z L. Large-area all‐textile pressure sensors for monitoring human motion and physiological signals [J]. Advanced Materials, 2017, 29(41): 1703700.
    [68] Xiao L, Chen Z, Feng C, Liu L, Bai Z Q, Wang Y, Qian L, Zhang Y Y, Li Q Q, Jiang K L, Fan S. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers [J]. Nano Letters, 2008, 8(12): 4539.
    [69] Aliev A E, Lima M D, Fang S, Baughman R H. Underwater sound generation using carbon nanotube projectors [J]. Nano Letters, 2010, 10(7): 2374.
    [70] Besteman K, Lee J O, Wiertz F G M, Heering H A, Dekker C. Enzyme-coated carbon nanotubes as single-molecule biosensors [J]. Nano Letters, 2003, 3(6): 727.
    [71] Kauffman D R, Star A. Electronically monitoring biological interactions with carbon nanotube field-effect transistors [J]. Chemical Society Reviews, 2008, 37(6): 1197.
    [72] Dong X, Lau C M, Lohani A, Mhaisalkar S G, Kasim Johnson, Shen Z X, Ho X N, Rogers J A. Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors [J]. Advanced Materials, 2008, 20(12): 2389.
    [73] Su S, Sun H, Xu F, Yuwen L, Fan C, Wang L. Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles [J]. Microchim Acta, 2014, 181(13): 1497.
    [74] Zhu L M, Luo L Q, Wang Z X. DNA electrochemical biosensor based on thionine-graphene nanocomposite [J]. Biosensors and Bioelectronics, 2012, 35(1): 507.
    [75] Tu H L, Zhao H B, Wei F, Zhang Q Z, Du J. Research progress in two-dimensional atomic crystal materials and Van der Waals heterostructures [J]. Chinese Journal of Rare Metals, 2017, 41(5), 449.(屠海令, 赵鸿滨, 魏峰, 张青竹, 杜军. 二维原子晶体材料及其范德华异质结构研究进展 [J]. 稀有金属, 2017, 41(5): 449.)
    [76] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D transition metal dichalcogenides [J]. Nature Reviews Materials, 2017, 2(8): 17033.
    [77] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F. Emerging photoluminescence in monolayer MoS2 [J]. Nano Letters, 2010, 10(4): 1271.
    [78] Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A. Single-layer MoS2 transistors [J]. Nature Nanotechnology, 2011, 6(3): 147.
    [79] Li H, Yin Z, He Q, Li H, Huang X, Lu G,Fam D W H, Tok A I Y, Zhang Q, Zhang H. Fabrication of single-and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature [J]. Small, 2012, 8(1): 63.
    [80] He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications [J]. Small, 2012, 8(19): 2994.
    [81] Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P, Rao C N. Sensing behavior of atomically thin-layered MoS2 transistors [J]. ACS Nano, 2013, 7(6): 4879.
    [82] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication [J]. Angewandte Chemie International Edition, 2011, 50(47): 11093.
    [83] Kang M A, Han J K, Cho S Y, Bu S D, Park C Y, Myung S, Song W, Lee S S, Lim J, An K S. Strain-gradient effect in gas sensors based on three-dimensional hollow molybdenum disulfide nanoflakes. ACS Applied Materials & Interfaces, 2017, 9(50): 43799.
    [84] Samnakay R, Jiang C, Rumyantsev S L, Shur M S, Balandin A A. Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: comparison with graphene devices [J]. Applied Physics Letters, 2015, 106(2): 023115.
    [85] Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, Wang S, Shi D X, Sun Q J, Zhang G. Highly sensitive MoS2humidity sensors array for noncontact sensation [J]. Advanced Materials, 2017, 29(34): 1702076.
    [86] Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity [J]. Biosensors and Bioelectronics, 2015, 64: 386.
    [87] Kong R M, Ding L, Wang Z, You J, Qu F. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen [J]. Analytical and Bioanalytical Chemistry, 2015, 407(2): 369.
    [88] Lee J, Dak P, Lee Y, Park H, Choi W, Alam M A, Kim S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules [J]. Scientific Reports, 2014, 4: 7352.
    [89] Wu S, Zeng Z, He Q, Wang S J, Du Y P, Yin Z Y, Sun X P, Chen W, Zhang H. Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications [J]. Small, 2012, 8(14): 2264.
    [90] Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits [J]. Nature Nanotechnology, 2017, 12(12): 1124.
    [91] Feng J, Peng L, Wu C, Sun X, Hu S, Lin C, Dai J, Yang J, Xie Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface [J]. Advanced Materials, 2012, 24(15): 1969.
    [92] Im C, Choi C, Kim D H, Son D, Joh E, Lee G J, Cho K W, Kim M, Joh E, Lee J, Son D, Kwon S, Jeon N L, Song Y M, Lu N, Kim D. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array [J]. Nature Communications, 2017, 8(1): 1664.
    [93] Moulton B, Zaworotko M J. From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids [J]. Chemical Reviews, 2001, 101(6): 1629.
    [94] Long J R, and Yaghi O M. The pervasive chemistry of metal-organic frameworks [J]. Chemical Society Reviews, 2009, 38(5): 1213.
    [95] Ondreiovic G, Sirota A. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature, 1995, 378(6558): 14.
    [96] Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-organic frameworks: functional luminescent and photonic materials for sensing applications [J]. Chemical Society Reviews, 2017, 46(11): 3242.
    [97] Khatua S, Goswami S, Biswas S, Tomar K, Jena H S, Konar S. Stable multiresponsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner [J]. Chemistry of Materials, 2015, 27(15): 5349.
    [98] Ma J P, Yu Y, Dong Y B. Fluorene-based Cu (II)-MOF: a visual colorimetric anion sensor and separator based on an anion-exchange approach [J]. Chemical Communications, 2012, 48(24): 2946.
    [99] Lu G, Hupp J T. Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases [J]. Journal of the American Chemical Society, 2010, 132(23): 7832.
    [100] Chernikova V, Yassine O, Shekhah O, Eddaoudi M, Salama K N. Highly sensitive and selective SO2 MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode [J]. Journal of Materials Chemistry A, 2018, 6(14): 5550.
    [101] Zhang M, Feng G, Song Z, Zhou Y P, Chao H Y, Yuan D, Tan T T, Guo Z, Hu Z, Tang B Z, Liu B, Zhao D. Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds [J]. Journal of the American Chemical Society, 2014, 136(20): 7241.
    [102] Zhang S R, Du D Y, Qin J S, Bao S J, Li S L, He W W, Lan Y Q, Shen P, Su Z M. A fluorescent sensor for highly selective detection of Nitroaromatic explosives based on a 2D, extremely stable, metal-organic framework [J]. Chemistry-A European Journal, 2014, 20(13): 3589.
    [103] Hu X L, Liu F H, Qin C, Shao K Z, and Su Z M. A 2D bilayered metal-organic framework as a fluorescent sensor for highly selective sensing of nitro explosives [J]. Dalton Transactions, 2015, 44(17): 7822.
    [104] Wang Y, Cheng L, Liu Z Y, WangX G, Ding B, Yin L, Zhou B B, Li M S, Wang J X, Zhao X J. An ideal detector composed of two-Dimensional Cd(II)-Triazole frameworks for nitro-compound explosives and potassium dichromate [J]. Chemistry-A European Journal, 2015, 21(40): 14171.
    [105] Rachuri Y, Parmar B, Bisht K K, Suresh E. Mixed ligand two dimensional Cd(II)/Ni(II) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd(II) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media [J]. Dalton Transactions, 2016, 45(18): 7881.
    [106] Wang H S, Li J, Li J Y, Wang K, Ding Y, Xia X H. Lanthanide-based metal-organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells [J]. NPG Asia Materials, 2017, 9(3): e354.
    [107] Zhao H Q, Qiu G H, Liang Z, Li M M, Sun B, Qin L, Yang S P, Chen W H, Chen J X. A zinc(II)-based two-dimensional MOF for sensitive and selective sensing of HIV-1 ds-DNA sequences [J]. Analytica Chimica Acta, 2016, 922: 55.
    [108] Ling P, Lei J, Zhang L, Ju H. Porphyrin-encapsulated metal-organic frameworks as mimetic catalysts for electrochemical DNA sensing via allosteric switch of hairpin DNA [J]. Analytical Chemistry, 2015, 87(7): 3957.
    [109] Wang Y, Zhao M, Ping J, Chen B, Cao X, Huang Y, Tan C, Ma Q, Wu S, Yu Y, Lu Q, Chen J, Zhao W, Ying Y, Zhang H. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes [J]. Advanced Materials, 2016, 28(21): 4149.
    [110] Usov P M, Fabian C, D′Alessandro D M. Rapid determination of the optical and redox properties of a metal-organic framework via in situ solid state spectroelectrochemistry [J]. Chemical Communications, 2012, 48(33): 3945.
    [111] Khan I A, Badshah A, Nadeem M A, Haider N, Nadeem M A. A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications [J]. International Journal of Hydrogen Energy, 2014, 39(34): 19609.
    [112] Wu X Q, Ma J G, Li H, Chen D M, Gu W, Yang G M, Cheng P. Metal-organic framework biosensor with high stability and selectivity in a bio-mimic environment [J]. Chemical Communications, 2015, 51(44): 9161.
    [113] Chen L, Ye J W, Wang H P, Pan M, Yin S Y, Wei Z W, Zhang L Y, Wu K, Fan Y N, Su C Y. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence [J]. Nature Communications, 2017, 8: 15985.
    [114] Culver H R, Clegg J R, Peppas N A. Analyte-responsive hydrogels: intelligent materials for biosensing and drug delivery [J]. Accounts of Chemical Research, 2017, 50(2): 170.
    [115] Cai Z, Smith N L, Zhang J T, Asher S A. Two-dimensional photonic crystal chemical and biomolecular sensors [J]. Analytical Chemistry, 2015, 87 (10): 5013.
    [116] Zhang JT, Wang L, Luo J, Tikhonov A, Kornienko N, Asher S A. 2-D array photonic crystal sensing motif [J]. Journal of the American Chemical Society, 2011, 133 (24): 9152.
    [117] Ben-Moshe M, Alexeev V L, Asher S A. Fast responsive crystalline colloidal array photonic crystal glucose sensors [J]. Analytical Chemistry, 2006, 78 (14): 5149.
    [118] Zhang JT,Cai Z, Kwak D H, Liu X, Asher S A. Twodimensional photonic crystal sensors for visual detection of lectin concanavalin A [J]. Analytical chemistry, 2014, 86 (18): 9036.
    [119] Xiao F, Sun Y, Du W, Shi W, Wu Y, Liao S, Wu Z, Yu R. Smart photonic crystal hydrogel material for uranyl ion monitoring and removal in water [J]. Advanced Functional Materials, 2017, 27(42): 1702147.
    [120] Helwa Y, Dave N, Froidevaux R, Samadi A, Liu J. Aptamer-functionalized hydrogel microparticles for fast visual detection of mercury(II) and adenosine [J]. ACS Applied Materials & Interfaces, 2012, 4 (4): 2228.
    [121] Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I. Semi-wet peptide/protein array using supramolecular hydrogel [J]. Nature Materials, 2004, 3 (1): 58.
    [122] Yan L, Zhu Z, Zou Y, Huang Y, Liu D, Jia S, Xu D, Wu M, Zhou Y, Zhou S, Yang C J. Target-responsive “Sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets [J]. Journal of the American Chemical Society, 2013, 135(10): 3748.
    [123] Lei Z, Wang Q, Sun S, Zhu W, Wu P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing [J]. Advanced Materials, 2017, 29(22): 1700321.
    [124] Yin M J, Yao M, Gao S, Zhang A P, Tam H Y, Wai P K A. Rapid 3D patterning of poly (acrylic acid) ionic hydrogel for miniature pH sensors [J]. Advanced Materials, 2016, 28(7): 1394.
    [125] Sokolov A N, Roberts M E, Johnson O B, Cao Y, Bao Z. Induced sensitivity and selectivity in thin-film transistor sensors via calixarene layers [J]. Advanced Materials, 2010, 22(21): 2349.
    [126] Zang Y, Huang D, Di C A, Zhu D. Device engineered organic transistors for flexible sensing applications [J]. Advanced Materials, 2016, 28(22): 4549.
    [127] Zang Y P, Di C A, Zhu D B. Advances of organic field-effect transistor based sensors [J]. Scientia Sinica Chemica, 2016, 46: 1023.(臧亚萍, 狄重安, 朱道本. 有机场效应晶体管传感器研究进展 [J]. 中国科学: 化学, 2016, 46:1023.)
    [128] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Organic nonvolatile memory transistors for flexible sensor arrays [J]. Science, 2009, 326(5959): 1516.
    [129] Sekitani T, Zschieschang U, Klauk H, Someya T. Flexible organic transistors and circuits with extreme bending stability [J]. Nature Materials, 2010, 9(12): 1015.
    [130] Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schw?diauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T. An ultra-lightweight design for imperceptible plastic electronics [J]. Nature, 2013, 499(7459): 458.
    [131] Mannsfeld S C, Tee B C, Stoltenberg R M, Chen C V H, Barman S, Muir B V, Sokolov A N, Reese C, Bao Z. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers [J]. Nature Materials, 2010, 9(10): 859.
    [132] Schwartz G, Tee B CK, Mei J, Appleton A L, Kim D H, Wang H, Bao Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring [J]. Nature Communications, 2013, 4: 1859.
    [133] Chen X, Wu Z, Xu S, Wang L, Huang R, Han Y, Ye W, Xiong W, Han T, Long G, Wang Y, He Y, Cai Y, Sheng P, Wang N. Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures [J]. Nature Communications, 2015, 6: 6088.
    [134] Someya T, Dodabalapur A, Huang J, See K C, Katz H E. Chemical and physical sensing by organic field-effect transistors and related devices [J]. Advanced Materials, 2010, 22(34): 3799.
    [135] Yu J, Yu X, Zhang L, Zeng H. Ammonia gas sensor based on pentacene organic field-effect transistor [J]. Sensors and Actuators B: Chemical, 2012, 173: 133.
    [136] Zhang F, Di C A, Berdunov N, Hu Y, Hu Y, Gao X, Meng Q, Sirringhaus H, Zhu D. Ultrathin film organic transistors: precise control of semiconductor thickness via spin-coating [J]. Advanced Materials, 2013, 25(10): 1401.
    [137] Luo H, Chen S, Liu Z, Zhang C, Cai Z, Chen X, Zhang G, Zhao H, Decurtins S, Liu S, Zhang D. A Cruciform electron donor-acceptor semiconductor with solid-state red emission: 1D/2D optical waveguides and highly sensitive/selective detection of H2S gas [J]. Advanced Functional Materials, 2014, 24(27): 4250.
    [138] Roberts M E, Mannsfeld S C, Queraltó N, Reese C, Locklin J, Knoll W, Bao Z. Water-stable organic transistors and their application in chemical and biological sensors [J]. Proceedings of the National Academy of Sciences, 2008, 105(34): 12134.
    [139] Chen H, Dong S, Bai M, Cheng N, Wang H, Li M, Du H, Hu S, Yang Y, Yang T, Zhang F, Gu L, Meng S, Hou S, Guo X. Solution-processable, low-voltage, and high-performance monolayer field-effect transistors with aqueous stability and high sensitivity [J]. Advanced Materials, 2015, 27(12): 2113.
    [140] Knopfmacher O, Hammock M L, Appleton A L, Schwartz G, Mei J, Lei T, Pei J, Bao Z. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment [J]. Nature Communications, 2014, 5: 2954.
    [141] Yu K J, Yan Z, Han M, Rogers J A. Inorganic semiconducting materials for flexible and stretchable electronics [J]. npj Flexible Electronics, 2017, 1(1): 4.
    [142] Rogers J A. Wearable electronics: nanomesh on-skin electronics [J]. Nature Nanotechnology, 2017, 12(9): 839.
    [143] Ma Y, Feng X, Rogers J A, Huang Y, Zhang Y. Design and application of ‘J-shaped’ stress-strain behavior in stretchable electronics: a review [J]. Lab. on a Chip., 2017, 17(10): 1689.
    [144] Zhang Y, Zhang F, Yan Z, Ma Q, Li X, Huang Y, Rogers J A. Corrigendum: printing, folding and assembly methods for forming 3D mesostructures in advanced materials [J]. Nature Reviews Materials, 2017, 2(4): 17029.
    [145] Bao Z. Skin-inspired organic electronic materials and devices [J]. MRS Bulletin, 2016, 41(11): 897.
    [146] Someya T, Bao Z, Malliaras G G. The rise of plastic bioelectronics [J]. Nature, 2016, 540(7633): 379.
    [147] Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin [J]. Nature Materials, 2016, 15(9): 937.
    [148] Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) [J]. Advanced Materials, 2018, 30(52): 1804779.
    [149] Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances [J]. Nature Communications, 2017, 8(1): 1207.
    [150] Cai Y, Shen J, Ge G, Zhang Y, Jin W, Huang W, Shao J, Yang J, Dong X. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range [J]. ACS Nano, 2018, 12(1): 56.
    [151] Jin L, Ma S, Deng W, Yan C, Yang T, Chu X, Tian G, Xiong D, Lu J, Yang W. Polarization-free high-crystallization β-PVDF piezoe-lectric nanogenerator toward self-powered 3D acceleration sensor [J]. Nano Energy, 2018, 50: 632.
    [152] Hu Y, Zhao T, Zhu P, Zhang Y, Liang X, Sun R, Wong C P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring [J]. Nano Research, 2017, 11(4): 1938.
    [153] Ouyang H, Tian J, Sun G, Zou Y, Li H, Zhao L, Shi B, Fan Y, Fan Y, Wang Z L, Li Z. Self-powered pulse sensor for antidiastole of cardiovascular disease [J]. Advanced Materials, 2017, 29(40): 1703456.
    [154] Tao L Q, Zhang K N, Tian H, Liu Y, Wang D Y, Chen Y Q, Yang Y, Ren T L. Graphene-paper pressure sensor for detecting human motions [J]. ACS Nano, 2017, 11(9): 8790.
    [155] Atalay A, Sanchez V, Atalay O, Vogt D M, Haufe F, Wood R J, Walsh C J. Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking [J]. Advanced Materials Technologies, 2017, 2(9): 1700136.
    [156] Liu X, Lu C, Wu X, Zhang X. Self-healing strain sensors based on nanostructured supramolecular conductive elastomers [J]. Journal of Materials Chemistry A, 2017, 5(20): 9824.
    [157] Han Y, Wu X, Zhang X, Lu C. Self-healing, highly sensitive electronic sensors enabled by metal-ligand coordination and hierarchical structure design [J]. ACS Applied Materials and Interfaces, 2017, 9(23): 20106.
    [158] Guo L, Yang Z, Dou X. Artificial olfactory system for trace identification of explosive vapors realized by optoelectronic schottky sensing [J]. Advanced Materials, 2017, 29(5): 1604528.
    [159] Chen J, Wang Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator [J]. Joule, 2017, 1(3): 480.
    [160] Wang Z L. On Maxwell′s displacement current for energy and sensors: the origin of nanogenerators [J]. Materials Today, 2017, 20(2): 74.
    [161] Zhang B, Zhang L, Deng W, Jin L, Chun F, Pan H, Gu B, Zhang H, Lv Z, Yang W, Wang Z L. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring [J]. ACS Nano, 2017, 11(7): 7440.
    [162] Liu Y C, Zhang Y X, Zhao K, Yang Z, Feng J S, Zhang X, Wang K, Meng L N, Ye H C, Liu M, Liu S Z. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals [J]. Advanced Materials, 2018, 30(29): 1707314.
    [163] Eun D S, Kong D Y, Yoo H J, Hong Y M, Jang J M, Kang T W, Lee J H. Design and fabrication of a MEMS-based multi-sensor [A]. 3rd IEEE International Conference on In Nano/Micro Engineered and Molecular Systems [C]. Sanya: IEEE, 2008. 588.
    [164] Pelliccione M, Jenkins A, Ovartchaiyapong P, Ovartchaiyapong P, Reetz C, Emmanouilidou E, Ni N, Jayich A C B. Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor [J]. Nature Nanotechnology, 2016, 11(8): 700.
    [165] Nuclear Street News Team. DOE Awards U. of Pittsburgh Nearly $1M to Develop Radiation-Resistant Sensors [EB/OL]. http://nuclearstreet.com/nuclear_power_industry_news/b/nuclear_power_news/archive/2014/10/23/doe-awards-u.-of-pittsburgh-nearly-_2400_1m-to-develop-radiation_2d00_resistant-sensors-102301#.XC6plna-ciI, 2014-10-23/2019-1-4.
    [166] Psaltis D, Quake S R, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics [J]. Nature, 2006, 442(7101): 381.
    [167] Sünner T, Stichel T, Kwon S H, Schlereth T W, H?fling S, Kamp M, Forchel A. Photonic crystal cavity based gas sensor [J]. Applied Physics Letters, 2008, 92(26): 261112.
    [168] Suter J D, Howard D J, Shi H, Caldwell C W, Fan X. Label-free DNA methylation analysis using opto-fluidic ring resonators [J]. Biosensors and Bioelectronics, 2010, 26(3): 1016.
    [169] Monifi F, Zhang J, ?zdemir ? K, Peng B, Liu Y, Bo F, Nori F, Yanget L. Optomechanically induced stochastic resonance and chaos transfer between optical fields [J]. Nature Photonics, 2016, 10(6): 399.
    [170] Saffo P. Sensors: the next wave of innovation [J]. Communications of the ACM, 1997, 40(2): 93.