基于SRAP分子标记的材用云南松种质保存库构建策略
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Strategy for constructing Pinus yunnanensis germplasm bank for timber based on the SRAP molecular marker
  • 作者:王晓丽 ; 高成杰 ; 李昆
  • 英文作者:Wang Xiao-Li;Gao Cheng-Jie;Li Kun;Research Institute of Resources Insects,Chinese Academy of Forestry;College of Forestry,Southwest Forestry University;
  • 关键词:云南松 ; 材用种质保存库 ; 取样策略 ; SRAP分子标记
  • 英文关键词:Pinus yunnanensis;;Germplasm bank for timber;;Sampling strategy;;SRAP marker
  • 中文刊名:WZXY
  • 英文刊名:Plant Science Journal
  • 机构:中国林业科学研究院资源昆虫研究所;西南林业大学林学院;
  • 出版日期:2019-04-15
  • 出版单位:植物科学学报
  • 年:2019
  • 期:v.37
  • 基金:中国林业科学研究院基本科研业务费专项(CAFYBB2017SY030);; 十三五农村领域国家科技计划(2015BAD07B0404)~~
  • 语种:中文;
  • 页:WZXY201902010
  • 页数:10
  • CN:02
  • ISSN:42-1817/Q
  • 分类号:91-100
摘要
以云南松(Pinus yunnanensis Franch.)全分布区内干形优良的780株样株作为原种质,基于SRAP分析的位点作为种质保存库构建数据,设10%、20%、30%、40%4个抽样比例,采用改进的最小距离逐步取样法构建其种质子集。结果显示:种质子集的多态位点保留率均在90%以上且等位基因保留率皆大于95%,5个遗传多样性评价参数最小值均为10%抽样比例种质子集,且该子集居群内的遗传多样性小于原种质;在种质子集与原种质的均值t检验中,10%抽样比例种质子集有2个指标与原种质间存在显著差异;方差F检验中,20%和10%抽样比例种质子集的分别有1个和6个遗传多样性指标与原种质有显著差异且方差小于原种质;种质子集的遗传多样性均值与原种质的相关系数全部达到0.99以上,40%和30%抽样比例种质子集的遗传多样性方差与原种质的相关系数均大于0.80; 30%抽样比例种质保存库的平均遗传距离较原种质提高了52.16%,保持了原种质的方差分量分配模式,以较大的遗传距离实现了与原种质相似的聚类。本研究确认30%抽样比例种质保存库可以作为材用云南松种质资源的代表性子集。
        The genetic loci of the SRAP molecular marker in 780 Pinus yunnanensis Franch samples from the whole distribution area were used to establish a high-quality P. yunnanensis timber germplasm bank. Four P. yunnanensis germplasm subsets were constructed by improved least distance stepwise sampling at four sampling proportions,i. e.,10%,20%,30%,and 40%. Results showed that polymorphic locus retention rate of the four germplasm subsets was above 90% and the allele retention rate was greater than 95%. The minimum values of the five genetic diversity parameters were obtained from the germplasm subset constructed using the 10% sampling proportion,and the genetic diversity in the population of this subset was smaller than that of the original germplasm. Mean t-tests between the original and germplasm subsets showed significant differences between the 10% sampling ratio germplasm subset and the original. Furthermore,for the variance t-tests,several indicators of genetic diversity demonstrated significant differences between the original germplasm and the10% and 20% germplasm subsets,respectively,and the variances of these germplasm subsets were smaller than those of the original. The correlation coefficients of the mean genetic diversity between the original germplasm and the four germplasm subsets all reached 0.99.The correlation coefficients of genetic diversity between the original and the 40% and 30%germplasm subsets were more than 0.80. The average genetic distance of the 30% germplasm subset was 52.16% higher than that of the original germplasm; at the same time, the distribution pattern of variance components of the original germplasm was well maintained and similar clustering to the original germplasm was achieved with a large genetic distance.Therefore,the 30% sampling proportion germplasm subset could be used as a representative subset of the germplasm resources of P. yunnanensis.
引文
[1]金振洲,彭鉴.云南松[M].昆明:云南科技出版社,2004.
    [2]第二批国家林木种质资源库名单公布[J].园林科技,2016,142(4):47-48.
    [3]李莲芳,郑畹,韩明跃,苏俊武.云南松遗传改良进展及其育种策略剖析[J].西部林业科学,2010,39(2):104-110.Li LF,Zheng W,Han MY,Su JW.Progress of genetic improvement of Pinus yunnanensis and breeding strategy analysis[J].Journal of West China Forestry Science,2010,39(2):104-110.
    [4]曾宪君,李丹,胡彦鹏,黄秦军,苏晓华.欧洲黑杨优质核心种质库的初步构建[J].林业科学,2014,50(9):51-58.Zeng XJ,Li D,Hu YP,Huang QJ,Su XH.A preliminary study on construction of high-quality core collection of Populus nigra[J].Scientia Silvae Sinicae,2014,50(9):51-58.
    [5]Xu YL,Cai NH,Keith W,Kang XY,He CZ,et al.Genetic diversity and population structure of Pinus yunnanensis by simple sequence repeat markers[J].For Sci,2016,62(1):38-47.
    [6]刘占林,杨雪.5种松树的遗传多样性和遗传分化研究[J].西北植物学报,2007,27(12):2385-2392.Liu ZL,Yang X.Genetic diversity and differentiation of five pines using cpSSR and AFLP markers[J].Acta Botanica Boreali-Occidentalia Sinica,2007,27(12):2385-2392.
    [7]杨章旗,冯源恒,吴东山.细叶云南松天然种源林遗传多样性的SSR分析[J].广西植物,2014,34(1):10-14.Yang ZQ,Feng YH,Wu DS.Analysis of genetic diversity of Pinus yunnanensis var.tenuifolia nature populations by SSR marker[J].Guihaia,2014,34(1):10-14.
    [8]赵冰,张启翔.中国蜡梅种质资源核心种质的初步构建[J].北京林业大学学报,2007(S1):16-21.Zhao B,Zhang QX.Preliminary construction of the core germplasm of Chimonanthus praecox in China[J].Journal of Beijing Forestry University,2007(S1):16-21.
    [9]李自超,张洪亮,曾亚文,杨忠义,申时全,等.云南地方稻种核心种质取样方案研究[J].中国农业科学,2000,33(5):1-7.Li ZC,Zhang HL,Zeng YW,Yang ZY,Shen SQ,et al.Study on sampling schemes of core collection of local varieties of rice in Yunnan,China[J].Scientia Agricultura Sinica,2000,33(5):1-7.
    [10]刘宁宁.植物资源核心种质构建与评价新方法的研究[D].杭州:浙江大学,2007.
    [11]徐海明.种质资源核心库构建方法的研究及其应用[D].杭州:浙江大学,2005.
    [12]Peter O,Nyaboga EN,Bargul JL.Analysis of genetic diversity of passion fruit(Passiflora edulis Sims)genotypes grown in Kenya by sequence-related amplified polymorphism(SRAP)markers[J].Ann Agr Sci,2018,16:367-375.
    [13]Budak H,Shearman RC,Parmaksiz I,Gaussoin RE,Riordan TP,et al.Molecular characterization of buffalo grass germplasm using sequence-related amplified polymorphism markers[J].Theor Appl Genet,2004,108(2):328-334.
    [14]白瑞霞.枣种质资源遗传多样性的分子评价及其核心种质的构建[D].保定:河北农业大学,2008.
    [15]彭婵,李振芳,向珊珊,张新叶.乌桕种质资源分子标记评价及核心种质初步构建[J].分子植物育种,2017,15(4):1455-1460.Peng C,Li ZF,Xiang SS,Zhang XY.Molecular marker evaluation and construction of primary core collection of Sapium sebiferum[J].Molecular Plant Breeding,2017,15(4):1455-1460.
    [16]玉苏甫·阿不力提甫.新疆的梨种质资源评价及核心种质库构建[D].乌鲁木齐:新疆农业大学,2014.
    [17]Fatemeh G,Mehdi R.Genetic structure and variation in different Iranian myrtle(Myrtus communis L.)populations based on morphological,phytochemical and molecular markers[J].Ind Crops Prod,2018,123:489-499.
    [18]Pereira-Lorenzo S,Ramos-Cabrer AM,Teresa B,Claudia M,Fiorella V,et al.Database of European chestnut cultivars and definition of a core collection using simple sequence repeats[J].Tree Genet Genomes,2017,13(5):114.
    [19]Balas FC,Osuna MD,Domínguez G,Pérez-Gragera F,López-Corrales M.Ex situ conservation of underutilised fruit tree species:establishment of a core collection for Ficus carica L.using microsatellite markers(SSRs)[J].Tree Genet Genomes,2014,10(3):703-710.
    [20]Guruprasad R,Krishnan R,Dandin SB,Girish NV.Groupwise sampling:a strategy to sample core entries from RAPD marker data with application to mulberry[J].Trees,2014,28(3):723-731.
    [21]Leroy T,De Bellis F,Legnate H,Musoli P,Kalonji A,et al.Developing core collections to optimize the management and the exploitation of diversity of the coffee Coffea canephora[J].Genetica,2014,142(3):185-199.
    [22]杨培奎,庄东红,马瑞君.粤东橄榄资源核心种质取样方案的研究[J].热带亚热带植物学报,2012,20(3):277-284.Yang PK,Zhuang DH,Ma RJ.Studies on sampling schemes of core collection of Canarium album L.in eastern Guangdong,China[J].Journal of Tropical and Subtropical Botany,2012,20(3):277-284.
    [23]袁海涛.新疆野核桃种质资源基础数据库的建立与核心种质构建方法研究[D].乌鲁木齐:新疆农业大学,2012.
    [24]张维瑞,袁王俊,尚富德.基于AFLP分子标记的桂花品种核心种质的构建[J].西北植物学报,2012,32(7):1349-1354.Zhang WR,Yuan WJ,Shang FD.Development of core collection of Osmanthus fragrans Lour.cultivars based on AFLP molecular markers[J].Acta Botanica Boreali-Occidentalia Sinica,2012,32(7):1349-1354.
    [25]王健兵.白蜡核心种质及绒毛白蜡无性系SSR评价体系建立[D].兰州:甘肃农业大学,2014.
    [26]Naoko M,Masako O,Atsushi W.Construction of a core collection and evaluation of genetic resources for Cryptomeria japonica(Japanese cedar)[J].J Forest Res-Jpn,2015,20(1):186-196.
    [27]白卉.山杨遗传多样性研究与核心种质构建及利用[D].哈尔滨:东北林业大学,2010.
    [28]倪茂磊.美洲黑杨遗传多样性分析与核心种质库构建[D].南京:南京林业大学,2011.
    [29]Porebski S,Bailey LG,Baum BR.Modification of a CTABDNA extraction protocol for plants containing high polysaccharide and polyphenol components[J].Plant Mol Biol Rep,1997,15(1):8-15.
    [30]徐宁,程须珍,王素华,王丽侠,赵丹.以地理来源分组和利用表型数据构建中国小豆核心种质[J].作物学报,2008,34(8):1366-1373.Xu N,Cheng XZ,Wang SH,Wang LX,Zhao D.Establishment of an adzuki bean(Vigna angularis)core collection based on geographical distribution and phenotypic data in China[J].Acta Agronomica Sinica,2008,34(8):1366-1373.
    [31]Nei M,Li WH.Mathematical models for studying genetic variation in terms of restriction endonucleases[J].Proc Natl Acad Sci,1979,76:5269-5273.
    [32]张丹.华南野生蓖麻遗传多样性研究与核心种质构建[D].湛江:广东海洋大学,2010.
    [33]Diwan,Bauchan GR,Mcintosh MS.A core collection for the United States annual Medicago[J].Crop Sci,1995,34:279-285.