胶州湾滨海湿地枯落物分解过程中枯落物-土壤养分动态
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nutrient dynamics of litter-soil system during litter decomposition in coastal wetlands of Jiaozhou Bay
  • 作者:郗敏 ; 李毛毛 ; 陈婷 ; 李悦 ; 孔范龙
  • 英文作者:XI Min;LI Mao-mao;CHEN Ting;LI Yue;KONG Fan-long;College of Environmental Science and Engineering,Qingdao University;Civil Affairs Bureau of Changyi City,Weifang;
  • 关键词:滨海湿地 ; 枯落物分解 ; 净积累 ; 净释放
  • 英文关键词:coastal wetland;;litter decomposition;;net accumulation;;net release
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:青岛大学环境科学与工程学院;山东省潍坊市昌邑市民政局;
  • 出版日期:2018-12-27 16:50
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.309
  • 基金:国家自然科学基金项目(41771098)资助
  • 语种:中文;
  • 页:STXZ201904012
  • 页数:9
  • CN:04
  • ISSN:21-1148/Q
  • 分类号:98-106
摘要
通过为期52 d的室内实验模拟胶州湾滨海湿地米草、碱蓬、芦苇枯落物的分解过程,测定枯落物及土壤中有机碳(TOC)、氮(N)和磷(P)含量,研究枯落物分解过程中枯落物-土壤养分的动态变化。结果表明:52 d的分解过程中,米草、碱蓬和芦苇枯落物碳损失分别占初始总碳含量的24.44%、74.20%和49.75%;土壤中碳发生净积累;米草枯落物中氮发生净积累,碱蓬枯落物中氮发生净释放,芦苇枯落物中氮先积累后释放,后两者枯落物氮损失分别占初始总氮含量的37.93%和4.81%;土壤中氮发生净积累;枯落物和土壤中磷均表现为净释放,米草、碱蓬和芦苇枯落物磷损失分别占初始总磷含量的42.37%、59.27%和28.48%;枯落物-土壤系统中C、N、P的动态变化与枯落物和土壤性质密切相关,这主要是由微生物的活性和养分需求决定的。
        To classify the nutrient dynamics of litter-soil system during litter decomposition,a 52-day laboratory experiment was conducted to simulate the litter decomposition process of Spartina alterniflora,Suaeda glauca,and Phragmites australis in coastal wetlands of Jiaozhou Bay.The contents of organic carbon(TOC),nitrogen(N) and phosphorus(P) in litter and soil were measured.The results showed that carbon loss of S.alterniflora,S.glauca,and P.australis litter after 52-day incubation accounted for 24.44%,74.20%,and 49.75% of the initial total C contents,respectively.There was a net C accumulation in the soil.Nitrogen in the S.alterniflora litter had a net accumulation,but an opposite trend was found in the S.glauca litter.In addition,N in the P.australis litter accumulated first and then released.The N loss accounted for 37.93%and 4.81% of the initial litter N content of S.glauca and P.australis,respectively.Nevertheless,N in soil had a net accumulation during incubation.Phosphorus had a net release both in litter and soil.The P release from S.alterniflora,S.glauca,and P.australis litter accounted for42.37%,59.27% and 28.48% of the initial total P content,respectively.The dynamics of C,N,and P in litter-soil system were closely related to litter and soil properties,which were mainly determined by microbial activity and nutrient demand.
引文
陈桂香,陈淑云,王维奇,等.2017.闽江河口湿地螃蟹对枯落物分解的影响.亚热带资源与环境学报,12(3):35-42.
    陈书秀,江明喜.2006.三峡地区香溪河流域不同树种叶片凋落物的分解.生态学报,26(9):2905-2912.
    陈婷,郗敏,孔范龙,等.2016.枯落物分解及其影响因素.生态学杂志,35(7):1927-1935.
    龚伟,胡庭兴,王景燕,等.2007.川南天然常绿阔叶林人工更新后枯落物对土壤的影响.林业科学,43(7):112-119.
    侯贯云,翟水晶,高会,等.2017.盐度对互花米草枯落物分解释放硅、碳、氮元素的影响.生态学报,37(1):184-191.
    李会娟.2012.2种植物磷含量的检测方法比较研究.现代农业科技,(11):16-17.
    李顺姬,邱莉萍,张兴昌.2010.黄土高原土壤有机碳矿化及其与土壤理化性质的关系.生态学报,30(5):1217-1226.
    马维伟,王辉,黄蓉,等.2014.尕海湿地生态系统土壤有机碳储量和碳密度分布.应用生态学报,25(3):738-744.
    欧阳林梅,王纯,王维奇,等.2013.互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征.生态学报,33(2):389-394.
    孙志高,刘景双.2007.湿地枯落物分解及其对全球变化的响应.生态学报,27(4):1606-1618.
    史绮,焦锋,陈莹,等.2011.杭州西湖北里湖荷叶枯落物分解及其对水环境的影响.生态学报,31(18):5171-5179.
    邵学新,梁新强,吴明,等.2014.杭州湾潮滩湿地植物不同分解过程及其磷素动态.环境科学,35(9):3381-3388.
    王维奇,徐玲琳,曾从盛,等.2011.河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征.生态学报,31(23):7119-7124.
    吴建之,葛滢,王晓月.2000.过硫酸钾氧化吸光光度法测定植物总氮.理化检验:化学分册,36(4):166-167.
    武海涛,吕宪国,杨青.2006.湿地草本植物枯落物分解的影响因素.生态学杂志,25(11):1405-1411.
    武海涛,吕宪国,杨青,等.2007.三江平原典型湿地枯落物早期分解过程及影响因素.生态学报,27(10):4027-4035.
    肖颖,杨继松.2015.辽河口滨海湿地土壤有机碳矿化及其与盐分的关系.生态学杂志,34(10):2792-2798.
    杨继松,刘景双,于君宝,等.2006a.三江平原小叶章湿地枯落物分解及主要元素变化动态.生态学杂志,25(6):597-602.
    杨继松,刘景双,于君宝,等.2006b.三江平原沼泽湿地枯落物分解及其营养动态.生态学报,26(5):1297-1302.
    张文娟,曾陆金,王维奇,等.2011.闽江河口空心莲子草土壤碳库研究.湿地科学与管理,7(1):52-56.
    曾从盛,仝川,孙志高,等.2017.闽江河口湿地生物地球化学元素循环研究进展.亚热带资源与环境学报,12(3):1-9.
    曾从盛,张林海,王天鹅,等.2012.闽江河口湿地植物枯落物立枯和倒伏分解主要元素动态.生态学报,32(20):6289-6299.
    Aerts R,Caluwe HD.1997.Nutritional and plant-mediated controls on leaf litter decomposition of Carex species.Ecology,78:244-260.
    Chimney MJ,Pietro KC.2006.Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida(USA).Ecological Engineering,27:301-321.
    Clark JM,Bottrell SH,Evans CD,et al.2010.The importance of the relationship between scale and process in understanding long-term DOC dynamics.Science of the Total Environment,408:2768-2775.
    Davis SE,Corronado-Molina C,Childers DL,et al.2003.Temporally dependent C,N,and P dynamics associated with the decay of Rhizophora mangle L.leaf litter in oligotrophic mangrove wetlands of the Southern Everglades.Aquatic Botany,75:199-215.
    Duan H,Wang L,Zhang YN,et al.2018.Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River estuary.Geoderma,319:230-238.
    Elser JJ,Bracken MES,Cleland EE,et al.2007.Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems.Ecology Letters,10:1135-1142.
    Güsewell S,Verhoeven JTA.2006.Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter.Plant and Soil,287:131-143.
    He XT,Stevenson FJ,Mulvaney RL,et al.1988.Incorporation of newly immobilized15N into stable organic forms in soil.Soil Biology&Biochemistry,20:75-81.
    Kampichler C,Bruckner A.2010.The role of microarthropods in terrestrial decomposition:A meta-analysis of 40 years of litterbag studies.Biological Reviews of the Cambridge Philosophical Society,84:375-389.
    Liu PP,Wang QG,Bai JH,et al.2010.Decomposition and return of C and N of plant litters of Phragmites australis and Suaeda salsa in typical wetlands of the Yellow River Delta,China.Procedia Environmental Sciences,2:1717-1726.
    Luo YQ,Zhao XY,Andrén O,et al.2014.Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in northern China.Journal of Arid Land,6:423-431.
    Parton W,Silver WL,Burke IC,et al.2007.Global-scale similarities in nitrogen release patterns during long-term decomposition.Science,315:361-364.
    Rinkes ZL,Deforest JL,Grandy AS,et al.2014.Interactions between leaf litter quality,particle size,and microbial community during the earliest stage of decay.Biogeochemistry,117:153-168.
    Shilenkova OL,Tiunov AV.2013.Soil-litter nitrogen transfer and changes inδ13C andδ15N values in decomposing leaf litter during laboratory incubation.Pedobiologia,56:147-152.
    Sun ZG,Mou XJ,Sun WL.2016.Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis,Suaeda salsa,and Suaeda glauca litter in newly created marshes of the Yellow River estuary,China.Ecological Engineering,93:175-186.
    Tessier JT,Raynal DJ.2003.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.Journal of Applied Ecology,40:523-534.
    Wang WQ,Wang C,Sardans J,et al.2018.Storage and release of nutrients during litter decomposition for native and invasive species under different flooding intensities in a Chinese wetland.Aquatic Botany,149:5-16.
    Xi M,Zi YY,Wang QG,et al.2018.Assessment of the content,structure,and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay,China.Physics and Chemistry of the Earth,Parts A/B/C,103:35-44.
    Yang W,Zhao H,Leng X,et al.2017.Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China.Catena,156:281-289.
    Yanni SF,Suddick EC,Six J.2015.Photodegradation effects on CO2emissions from litter and SOM and photo-facilitation of microbial decomposition in a California grassland.Soil Biology&Biochemistry,91:40-49.
    Zhao QQ,Bai JH,Liu PP,et al.2015.Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands.CLEAN:Soil Air Water,43:441-445.