弛豫量热技术研究固体材料低温比热性质
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relaxation calorimetry and its application in low temperature specific heat study of solids
  • 作者:罗积鹏 ; 尹楠 ; 张群 ; 吴冰 ; 王思雨 ; 谭志诚 ; 史全
  • 英文作者:Ji-Peng Luo;Nan Yin;Qun Zhang;Bing Wu;Si-Yu Wang;Zhi-Cheng Tan;Quan Shi;Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology;
  • 关键词:比热 ; 低温量热 ; 弛豫量热 ; 热力学性质 ; 综合物理性质测量系统
  • 英文关键词:specific heat;;low temperature calorimetry;;relaxation calorimetry;;thermodynamic property;;PPMS
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:中国科学院大连化学物理研究所热化学实验室辽宁省能源材料热化学重点实验室洁净能源国家实验室;中国科学院大学;大连理工大学精密与特种加工教育部重点实验室;
  • 出版日期:2019-06-25 14:34
  • 出版单位:中国科学:化学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(编号:21473198,21727805);; 中国科学院“百人计划”项目资助
  • 语种:中文;
  • 页:JBXK201907006
  • 页数:13
  • CN:07
  • ISSN:11-5838/O6
  • 分类号:43-55
摘要
比热是物质最基础的热力学性质,通过测量并研究物质低温比热不仅可以计算得到熵、焓、吉布斯自由能等热力学函数,还可以获得有关物质物理性质、能量、结构及相变的信息,为相关热力学问题的探索与研究提供重要依据.低温比热测量一般有绝热量热、交流量热和弛豫量热三种技术;其中弛豫量热因测试样品用量少、测量温区低、测量准确度高、操作方便、有商品化仪器可得等优点,已成为近些年来发展最快、应用最广泛的低温比热测量技术.为了使研究者们更全面地了解这种量热技术,本文详细介绍了弛豫量热技术的测量原理、发展历程以及测量技术的研究进展,并结合当前热门研究领域,简要概述了国内外学者利用弛豫量热技术测量材料低温比热并研究相关热力学性质的最新工作进展.
        Specific heat is one of the most fundamental thermodynamic properties of substances. By measuring and studying low temperature specific heat, we can not only calculate the corresponding thermodynamic functions(e.g.,entropy, enthalpy and Gibbs free energy), but also obtain the information of materials related to their physical properties,energetics, molecular structures and phase transitions. Therefore, specific heat measurement could establish an important basis for the research and exploration of relevant thermodynamic issues. Adiabatic, alternating-current and relaxation calorimetry are commonly used methods for the low temperature specific heat measurement. Relaxation calorimetry has become the most popular low temperature specific heat measurement method due to its small sample amounts, extremely low temperature measurement regions, high measurement accuracy, simple operation procedure and available commercial instruments. In this review, we presented a brief introduction about the measurement concept and development process of relaxation calorimetry, and reviewed the recent work on the specific heat measurement technique improvement and the related thermodynamic property investigation on materials using this calorimetric method.
引文
1 Tan ZC,Shi Q,Liu BP,Zhang HT.J Therm Anal Calorim,2008,92:367-374
    2 Hu Z,Zuo J,Xia M,Fang D,Zang S.Acta Phys-chim Sin,2018,34:933-937(in Chinese)[胡之楠,左剑涛,夏美晨,房大维,臧树良.物理化学学报,2018,34:933-937]
    3 Gao Y,Liu S,Zhao Z,Tao H,Sun Z.Acta Phys-chim Sin,2018,34:858-872(in Chinese)[高云楠,刘世桢,赵振清,陶亨聪,孙振宇.物理化学学报,2018,34:858-872]
    4 Liu X,Luo J,Yin N,Tan ZC,Shi Q.Chin Chem Lett,2018,29:664-670
    5 Westrum EF Jr..J Chem Educ,1962,39:443-454
    6 Suga H,Matsuo T.Pure Appl Chem,1989,61:1123-1132
    7 Stewart GR.Rev Sci Instrum,1983,54:1-11
    8 Tan Z,Zhang B,Meng X,Li L.Sci China(Ser B),1999,29:162-168(in Chinese)[谭志诚,张际标,孟霜,李莉.中国科学(B辑),1999,29:162-168]
    9 Sullivan PF,Seidel G.Phys Rev,1968,173:679-685
    10 Schwall RE,Howard RE,Stewart GR.Rev Sci Instrum,1975,46:1054-1059
    11 Bachmann R,Disalvo Jr.FJ,Geballe TH,Greene RL,Howard RE,King CN,Kirsch HC,Lee KN,Schwall RE,Thomas HU,Zubeck RB.Rev Sci Instrum,1972,43:205-214
    12 Durek D,Baturic-Rubcic J.J Phys E-Sci Instrum,1972,5:424-428
    13 Greene RL,King CN,Zubeck RB,Hauser JJ.Phys Rev B,1972,6:3297-3305
    14 Schutz RJ.Rev Sci Instrum,1974,45:548-551
    15 Hatta I.Rev Sci Instrum,1979,50:292-295
    16 Griffing BF,Shivashankar SA.Rev Sci Instrum,1980,51:1030-1036
    17 Shepherd JP.Rev Sci Instrum,1985,56:273-277
    18 Banerjee S,Prins MWJ,Rajeev KP,Raychaudhuri AK.Pramana,1992,39:391-404
    19 Tsujii H,Andraka B,Palm EC,Murphy TP,Takano Y.Physica B-Condensed Matter,2003,329-333:1638-1639
    20 Tsujii H,Honda Z,Andraka B,Katsumata K,Takano Y.Physica B-Condensed Matter,2003,329-333:975-976
    21 Hardy V,Bréard Y,Martin C.J Phys-Condens Matter,2009,21:075403
    22 Suzuki H,Inaba A,Meingast C.Cryogenics,2010,50:693-699
    23 Brando M.Rev Sci Instrum,2009,80:095112
    24 Van Cleve E,Worsley MA,Kucheyev SO.Rev Sci Instrum,2013,84:053901
    25 Quantum Design.11578 Sorrento Valley Road,San Diego,CA 92121.http://www.qdusa.com
    26 Lashley JC,Hundley MF,Migliori A,Sarrao JL,Pagliuso PG,Darling TW,Jaime M,Cooley JC,Hults WL,Morales L,Thoma DJ,Smith JL,Boerio-Goates J,Woodfield BF,Stewart GR,Fisher RA,Phillips NE.Cryogenics,2003,43:369-378
    27 Dachs E,Bertoldi C.Europ J Mineral,2005,17:251-259
    28 JavorskyP,Wastin F,Colineau E,Rebizant J,Boulet P,Stewart G.J Nucl Mater,2005,344:50-55
    29 Marriott RA,Stancescu M,Kennedy CA,White MA.Rev Sci Instrum,2006,77:096108
    30 Kennedy CA,Stancescu M,Marriott RA,White MA.Cryogenics,2007,47:107-112
    31 Shi Q,Snow CL,Boerio-Goates J,Woodfield BF.J Chem Thermodyn,2010,42:1107-1115
    32 Shi Q,Boerio-Goates J,Woodfield BF.J Chem Thermodyn,2011,43:1263-1269
    33 Wang JL,Liu Q,Meng YS,Zheng H,Zhu HL,Shi Q,Liu T.Inorg Chem,2017,56:10674-10680
    34 Wang JL,Liu Q,Meng YS,Liu X,Zheng H,Shi Q,Duan CY,Liu T.Chem Sci,2018,9:2892-2897
    35 Zheng H,Liu X,Yin N,Tan Z,Shi Q.J Therm Anal Calorim,2019,135:3421-3428
    36 Shi Q,Zhang L,Schlesinger ME,Boerio-Goates J,Woodfield BF.J Chem Thermodyn,2013,61:51-57
    37 Shi Q,Zhang L,Schlesinger ME,Boerio-Goates J,Woodfield BF.J Chem Thermodyn,2013,62:86-91
    38 Shi Q,Zhang L,Schlesinger ME,Boerio-Goates J,Woodfield BF.J Chem Thermodyn,2013,62:35-42
    39 Zhang Y,Shi Q,Schliesser J,Woodfield BF,Nan Z.Inorg Chem,2014,53:10463-10470
    40 Liu X,Liu J,Zhang S,Nan Z,Shi Q.J Phys Chem C,2016,120:1328-1341
    41 Zhou W,Shi Q,Woodfield BF,Navrotsky A.J Chem Thermodyn,2011,43:970-973
    42 Ma C,Shi Q,Woodfield BF,Navrotsky A.J Chem Thermodyn,2013,60:191-196
    43 Schliesser JM,Huang B,Sahu SK,Asplund M,Navrotsky A,Woodfield BF.J Solid State Chem,2018,259:79-90
    44 Olsen RE,Alam TM,Bartholomew CH,Enfield DB,Woodfield BF.J Phys Chem C,2014,118:9176-9186
    45 Schliesser JM,Olsen RE,Enfield DB,Woodfield BF.J Phys Chem C,2015,119:17867-17875
    46 Boumaza A,Favaro L,Lédion J,Sattonnay G,Brubach JB,Berthet P,Huntz AM,Roy P,Tétot R.J Solid State Chem,2009,182:1171-1176
    47 Munro M.J Am Ceramic Soc,2005,80:1919-1928
    48 Calvin JJ,Asplund M,Zhang Y,Huang B,Woodfield BF.J Chem Thermodyn,2017,112:77-85
    49 Asplund M,Calvin JJ,Zhang Y,Huang B,Woodfield BF.J Chem Thermodyn,2018,118:165-174
    50 Sun K,Kou Y,Zheng H,Liu X,Tan Z,Shi Q.Sol Energy Mater Sol Cells,2018,178:139-145
    51 Jia R,Sun K,Li R,Zhang Y,Wang W,Yin H,Fang D,Shi Q,Tan Z.J Chem Thermodyn,2017,115:233-248
    52 Kou Y,Wang S,Luo J,Sun K,Zhang J,Tan Z,Shi Q.J Chem Thermodyn,2019,128:259-274
    53 Ribeiro da Silva MAV,Ribeiro da Silva MDMC,Lobo Ferreira AIMC,Shi Q,Woodfield BF,Goldberg RN.J Chem Thermodyn,2013,58:20-28
    54 Goldberg RN,Schliesser J,Mittal A,Decker SR,Santos AFLOM,Freitas VLS,Urbas A,Lang BE,Heiss C,Ribeiro da Silva MDMC,Woodfield BF,Katahira R,Wang W,Johnson DK.J Chem Thermodyn,2015,81:184-226
    55 Dai R,Zhang S,Yin N,Tan ZC,Shi Q.J Chem Thermodyn,2016,92:60-65
    56 Tsuji T,Yamamura Y,Nakajima N.Thermochim Acta,2004,416:93-98
    57 Yamamura Y,Kato M,Tsuji T.Thermochim Acta,2005,431:24-28
    58 Akaogi M,Takayama H,Kojitani H,Kawaji H,Atake T.Phys Chem Miner,2007,34:169-183
    59 Huang C,Wang X,Shi Q,Liu X,Zhang Y,Huang F,Zhang T.Inorg Chem,2015,54:4002-4010
    60 Cui Y,Li B,He H,Zhou W,Chen B,Qian G.Acc Chem Res,2016,49:483-493
    61 Calvin JJ,Asplund M,Akimbekov Z,Ayoub G,Katsenis AD,Navrotsky A,Fri??i?T,Woodfield BF.J Chem Thermodyn,2018,116:341-351