Experimental preparation of topologically ordered states via adiabatic evolution
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental preparation of topologically ordered states via adiabatic evolution
  • 作者:ZhiHuang ; Luo ; Jun ; Li ; ZhaoKai ; Li ; Ling-Yan ; Hung ; Yi ; Dun ; Wan ; XinHua ; Peng ; JiangFeng ; Du
  • 英文作者:ZhiHuang Luo;Jun Li;ZhaoKai Li;Ling-Yan Hung;Yi Dun Wan;XinHua Peng;JiangFeng Du;Beijing Computational Science Research Center;CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China;Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology;State Key Laboratory of Surface Physics and Department of Physics, Fudan University;Department of Physics and Center for Field Theory and Particle Physics, Fudan University;Collaborative Innovation Center of Advanced Microstructures, Nanjing University;Perimeter Institute for Theoretical Physics;Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China;
  • 英文关键词:topologically ordered state;;adiabatic evolution;;nuclear magnetic resonance
  • 中文刊名:JGXG
  • 英文刊名:中国科学:物理学 力学 天文学(英文版)
  • 机构:Beijing Computational Science Research Center;CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China;Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology;State Key Laboratory of Surface Physics and Department of Physics, Fudan University;Department of Physics and Center for Field Theory and Particle Physics, Fudan University;Collaborative Innovation Center of Advanced Microstructures, Nanjing University;Perimeter Institute for Theoretical Physics;Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China;
  • 出版日期:2019-05-09 13:42
  • 出版单位:Science China(Physics,Mechanics & Astronomy)
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Program on Key Basic Research Project(Grant Nos.2013CB921800,and 2014CB848700); the National Science Fund for Distinguished Young Scholars(Grant No.11425523); the National Natural Science Foundation of China(Grant Nos.11805008,11227901,11734002,11374032,and 91021005); the Strategic Priority Research Program(B)of the CAS(Grant No.XDB01030400); the Research Fund for the Doctoral Program of Higher Education of China(RFDPHEC)(Grant No.20113402110044);; the support from the John Templeton foundation(Grant No.39901);; supported in part by Perimeter Institute for Theoretical Physics
  • 语种:英文;
  • 页:JGXG201908003
  • 页数:7
  • CN:08
  • ISSN:11-5849/N
  • 分类号:43-49
摘要
Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.
        Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.
引文
1 X.G.Wen,Int.J.Mod.Phys.B 04,239(1990).
    2 X.-G.Wen,Quantum Field Theory of Many-Body Systems(Oxford University Press,Oxford,2004).
    3 D.C.Tsui,H.L.Stormer,and A.C.Gossard,Phys.Rev.Lett.48,1559(1982);R.B.Laughlin,ibid.,50,1395(1983).
    4 S.Sachdev,Quantum Phase Transition(Cambridge University Press,Cambrige,1999).
    5 L.D.Landau,Phys.Zs.Sowjet 11,26(1937).
    6 V.L.Ginzburg,and L.D.Landau,J.Exp.Eheor.Phys.20,1064(1950).
    7 R.B.Laughlin,Phys.Rev.Lett.50,1395(1983).
    8 X.Chen,Z.C.Gu,and X.G.Wen,Phys.Rev.B 82,155138(2010),arXiv:1004.3835.
    9 A.Kitaev,and J.Preskill,Phys.Rev.Lett.96,110404(2006).
    10 A.Hamma,W.Zhang,S.Haas,and D.A.Lidar,Phys.Rev.B 77,155111(2008),arXiv:0705.0026.
    11 M.Levin,and X.G.Wen,Phys.Rev.Lett.96,110405(2006).
    12 X.G.Wen,and Q.Niu,Phys.Rev.B 41,9377(1990).
    13 D.Arovas,J.R.Schrieffer,and F.Wilczek,Phys.Rev.Lett.53,722(1984).
    14 X.G.Wen,Adv.Phys.44,405(1995).
    15 A.Y.Kitaev,Ann.Phys.303,2(2003).
    16 C.Nayak,S.H.Simon,A.Stern,M.Freedman,and S.Das Sarma,Rev.Mod.Phys.80,1083(2008),arXiv:0707.1889.
    17 A.Stern,and N.H.Lindner,Science 339,1179(2013).
    18 M.H.Freedman,A.Kitaev,M.J.Larsen,and Z.Wang,Bull.Am.Math.Soc.40,31(2003).
    19 E.Dennis,A.Kitaev,A.Landahl,and J.Preskill,J.Math.Phys.43,4452(2002).
    20 L.Jiang,G.K.Brennen,A.V.Gorshkov,K.Hammerer,M.Hafezi,E.Demler,M.D.Lukin,and P.Zoller,Nat.Phys 4,482(2008),arXiv:0711.1365.
    21 A.Kitaev,Ann.Phys.321,2(2006).
    22 X.G.Wen,Phys.Rev.Lett.90,016803(2003).
    23 R.P.Feynman,Int.J.Theor.Phys.21,467(1982).
    24 A.Friedenauer,H.Schmitz,J.T.Glueckert,D.Porras,and T.Schaetz,Nat.Phys.4,757(2008).
    25 J.Clarke,and F.K.Wilhelm,Nature 453,1031(2008).
    26 L.M.K.Vandersypen,and I.L.Chuang,Rev.Mod.Phys.76,1037(2005).
    27 X.Peng,J.Du,and D.Suter,Phys.Rev.A 71,012307(2005).
    28 K.Kim,M.S.Chang,S.Korenblit,R.Islam,E.E.Edwards,J.K.Freericks,G.D.Lin,L.M.Duan,and C.Monroe,Nature 465,590(2010).
    29 A.Kandala,A.Mezzacapo,K.Temme,M.Takita,M.Brink,J.M.Chow,and J.M.Gambetta,Nature 549,242(2017),arXiv:1704.05018.
    30 K.Li,M.Han,G.Long,Y.Wan,D.Lu,B.Zeng,and R.Laflamme,arXiv:1702.00365.
    31 H.Bernien,S.Schwartz,A.Keesling,H.Levine,A.Omran,H.Pichler,S.Choi,A.S.Zibrov,M.Endres,M.Greiner,V.Vuleti′c,and M.D.Lukin,Nature 551,579(2017),arXiv:1707.04344.
    32 J.F.Du,N.Xu,X.Peng,P.Wang,S.Wu,and D.Lu,Phys.Rev.Lett.104 030502(2010).
    33 B.P.Lanyon,J.D.Whitfield,G.G.Gillett,M.E.Goggin,M.P.Almeida,I.Kassal,J.D.Biamonte,M.Mohseni,B.J.Powell,M.Barbieri,A.Aspuru-Guzik,and A.G.White,Nat.Chem.2,106(2010).
    34 P.D.Nation,M.P.Blencowe,A.J.Rimberg,and E.Buks,Phys.Rev.Lett.103,087004(2009),arXiv:0904.2589.
    35 I.M.Georgescu,S.Ashhab,and F.Nori,Rev.Mod.Phys.86,153(2014),arXiv:1308.6253.
    36 X.Peng,Z.Luo,W.Zheng,S.Kou,D.Suter,and J.Du,Phys.Rev.Lett.113,080404(2014),arXiv:1408.3787.
    37 Z.Luo,C.Lei,J.Li,X.Nie,Z.Li,X.Peng,and J.Du,Phys.Rev.A93,052116(2016),arXiv:1601.06247.
    38 Z.H.Luo,J.Li,Z.K.Li,L.Y.Hung,Y.D.Wan,X.H.Peng,and J.F.Du,Nat.Phys.14,160(2018).
    39 F.Kong,C.Ju,Y.Liu,C.Lei,M.Wang,X.Kong,P.Wang,P.Huang,Z.Li,F.Shi,L.Jiang,and J.Du,Phys.Rev.Lett.117,060503(2016),arXiv:1604.04757.
    40 K.Li,Y.Wan,L.Y.Hung,T.Lan,G.Long,D.Lu,B.Zeng,and R.Laflamme,Phys.Rev.Lett.118,080502(2017),arXiv:1608.06932.
    41 A.Hamma,and D.A.Lidar,Phys.Rev.Lett.100,030502(2008).
    42 F.Verstraete,J.Dehaene,B.De Moor,and H.Verschelde,Phys.Rev.A 65,052112(2002).
    43 B.Regula,S.D.Martino,S.Lee,and G.Adesso,Phys.Rev.Lett.113110503(2014).
    44 W.Z.Zhang,Y.Han,B.Xiong,and L.Zhou,New J.Phys.19,083022(2017),arXiv:1609.05491.
    45 X.Peng,X.Zhu,X.Fang,M.Feng,K.Gao,X.Yang,and M.Liu Chem.Phys.Lett.340,509(2001).
    46 X.Nie,J.Huang,Z.Li,W.Zheng,C.Lee,X.Peng,and J.Du,Sci Bull.63,469(2018).
    47 Q.Yu,Y.B.Zhang,J.Li,H.Y.Wang,X.H.Peng,and J.F.Du,Sci China-Phys.Mech.Astron.60,070313(2017).
    48 A.Messiah,Quantum Mechanics(Wiley,New York,1976).
    49 C.H.Tseng,S.Somaroo,Y.Sharf,E.Knill,R.Laflamme,T.F.Havel,and D.G.Cory,Phys.Rev.A 61,012302(1999).
    50 X.Peng,J.Zhang,J.Du,and D.Suter,Phys.Rev.Lett.103,140501(2009),arXiv:0809.0589.
    51 N.Khaneja,T.Reiss,C.Kehlet,T.Schulte-Herbr¨uggen,and S.J.Glaser,J.Magn.Reson.172,296(2005).
    52 J.S.Lee,Phys.Lett.A 305,349(2002).