基于波面分解的跨海桥梁下部结构波浪荷载计算方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation Method of Wave Loadings on Sea-crossing Bridge Substructures Based on Decomposition of Wave Elevation
  • 作者:魏凯 ; 张家瑞 ; 梁春明
  • 英文作者:WEI Kai;ZHANG Jia-rui;LIANG Chun-ming;Department of Bridge Engineering, School of Civil Engineering, Southwest Jiaotong University;China Railway Eryuan Engineering Group Co., Ltd.;
  • 关键词:桥梁下部结构 ; 波浪荷载 ; 实测 ; 波面分解 ; 水槽试验
  • 英文关键词:Bridge substructure;;Wave loading;;Field measurement;;Decomposition of wave elevation;;Flume test
  • 中文刊名:TDBS
  • 英文刊名:Railway Standard Design
  • 机构:西南交通大学土木工程学院桥梁工程系;中铁二院工程集团有限责任公司;
  • 出版日期:2018-09-07 14:28
  • 出版单位:铁道标准设计
  • 年:2019
  • 期:v.63;No.689
  • 基金:国家自然科学基金(51708455)
  • 语种:中文;
  • 页:TDBS201905018
  • 页数:6
  • CN:05
  • ISSN:11-2987/U
  • 分类号:91-96
摘要
为建立波面与结构波浪荷载之间的直接联系,提出一种基于波面分解的桥梁下部结构波浪荷载计算方法。通过傅里叶变换将波面时程分解为有限个线性规则波的叠加,根据线性波浪理论,将每个规则波的水质点速度、加速度组合叠加,得到波面对应的水质点速度和加速度分布,最后利用Morison方程计算波浪荷载。通过与既有波浪理论、水槽试验和数值模拟结果进行对比,验证了方法的有效性和准确性。研究结果表明:(1)当波高不大时,本文方法得到的水平速度和加速度与波浪理论值吻合良好;(2)基于水槽试验的波面分解,本文方法结果与流速仪实测结果在时域与频域均吻合良好;(3)以一个圆柱桥墩为例,本文方法比数值模拟计算效率高,墩底剪力、弯矩的误差分别为3%、8%左右。
        In order to establish the relationship between wave elevation and wave loading, a calculation method of wave loadings on bridge substructures is developed based on the decomposition of wave elevation. Wave elevation is firstly decomposed into the superposition of a finite number of linear regular waves by Fourier transformation. The velocity and acceleration of water particle of each regular wave are superimposed according to the linear wave theory. The wave kinematics, such as water particle velocity and acceleration corresponding to the wave elevation, are then obtained. Finally, the wave loadings are calculated with Morison equation. The efficiency and accuracy of the developed method are validated by means of wave theory, wave flume experiment and numerical simulation. Study results show that, 1) the horizontal velocity and acceleration obtained by the developed method agree well with those of wave theory for waves with low wave height; 2) based on the decomposition of wave elevation in wave flume experiment, the results calculated by the developed method coincide with those from current meter in both time domain and frequency domain; 3) in the case of a cylinder pier, the developed method is more efficient than the numerical simulation, and the error of the base shear and bending moment is 3% and 8% respectively.
引文
[1] Feng M. Modern bridges in China[J]. Structure and Infrastructure Engineering, 2014,10(4):429-442.
    [2] 郭健.跨海大桥建设的主要技术现状与面临的挑战[J].桥梁建设,2010(6):66-69.
    [3] 王东辉,胡雄伟.平潭海峡公铁两用大桥深水区栈桥下部结构设计[J].铁道标准设计,2015,59(10):76-80.
    [4] 王东辉,张立超.平潭海峡公铁两用大桥栈桥设计[J].桥梁建设,2015,45(4):1-6.
    [5] 房忱,李永乐.跨海大桥小尺度下部结构非线性波浪荷载分析[J].铁道标准设计,2017,61(5):100-104.
    [6] 俞聿修.孤立桩柱上不规则波浪力的计算[J].海洋学报(中文版),1980(4):132-146.
    [7] 俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2003.
    [8] 高加云.波浪谱数学模型初步应用研究[D].南京:河海大学,2006.
    [9] 贺成柱.海浪谱估计方法研究及SZF型波浪浮标数据分析软件设计[D].青岛:中国海洋大学,2007.
    [10] 高加政,冯卫兵,吴迪.江苏沿海实测波浪谱在SWAN中的应用[J].水运工程,2015(12):36-40.
    [11] 梁春明.基于实测的海洋桥梁桥址区波浪特性及波浪力研究[D].成都:西南交通大学,2017.
    [12] 李玉成,张福然.作用于垂直桩柱上的波浪水流力[J].海洋学报(中文版),1986,8(6):751-761.
    [13] 康海贵,李玉成,王洪荣.垂直桩柱正向波流力的计算及水动力系数CD,CM分析方法的探讨[J].水动力学研究与进展A辑,1990,5(3):91-101.
    [14] Morison J R, Johnson J W, Schaaf S A. The Force Exerted by Surface Waves on Piles[J]. Journal of Petroleum Technology, 1950,2(5):149-154.
    [15] 王树青,梁丙臣.海洋工程波浪力学[M].青岛:中国海洋大学出版社,2013.
    [16] Hasselmann K, Barnett T, Bouws E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)[R]. Hamburg: 1973.
    [17] Holmaas T, Amdahl J, Emami Azadi M R. Usfos, a computer program for ultimate strength analysis of framed structures (with Pile-Soil Module)[R]. Norway: 2006.
    [18] 中华人民共和国交通运输部.海港水文规范:JTS145—2—2013[S].北京:人民交通出版社,2013.
    [19] Det Norske Veritas. Environmental conditions and environmental loads[S]. Norway: 2007.
    [20] 桂福坤,姚晓杰,孟昂,等.杆件结构物水动力系数与波浪要素关系研究[J].大连理工大学学报,2017,57(2):164-169.