超分子体系中自组装基元的相互作用与理论设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interactions between self-assembly building blocks and their theoretical design in supramolecular systems
  • 作者:刘鸿 ; 张厚玉 ; 胡中汉 ; 钱虎军 ; 吕中元
  • 英文作者:Hong Liu;Houyu Zhang;Zhonghan Hu;Hujun Qian;Zhongyuan Lu;State Key Laboratory of Supramolecular Structure and Materials, Jilin University;
  • 关键词:超分子体系 ; 相互作用 ; 自组装结构 ; 接枝聚合物纳米粒子
  • 英文关键词:supramolecular system;;interaction;;self-assembly structure;;polymer-grafted nanoparticle
  • 中文刊名:JBXK
  • 英文刊名:Scientia Sinica(Chimica)
  • 机构:吉林大学超分子结构与材料国家重点实验室;
  • 出版日期:2018-12-12 15:29
  • 出版单位:中国科学:化学
  • 年:2019
  • 期:v.49
  • 基金:国家自然科学基金(编号:21534004,21774051)资助项目
  • 语种:中文;
  • 页:JBXK201902008
  • 页数:12
  • CN:02
  • ISSN:11-5838/O6
  • 分类号:93-104
摘要
超分子体系中最典型的应用之一即是合理选择自组装构筑基元并精确调控其相互作用的协同效果,进一步制备具有光、电、自修复等特征的功能材料.为了实现精确调控自组装基元之间相互作用的目标,需要在微观层次认识不同类型非共价键相互作用的本质,正确描述它们协同的效果,进一步协调考虑体系熵与焓的贡献,合理设计自组装构筑基元.本文主要介绍了在超分子弱相互作用的精确描述、计算机模拟中静电长程相互作用的正确处理、接枝聚合物纳米粒子结构的微观特征以及聚合物/纳米粒子复合物聚集结构的影响因素等方面的研究进展.
        One of the most important applications in supramolecular systems is to design self-assembly building blocks and fine-tune their interactions in a cooperative way, and then fabricate function materials with unusual electro-optical or self-healing properties. To meet this challenge, it is indispensable to understand different types of non-covalent interactions at a microscopic scale, accurately describe the system with enough knowledge on its free energy, and suitably design self-assembly building blocks. In this article, we review our recent progress on the quantum chemistry calculations of several types of non-covalent interactions, the new theoretical treatment on electrostatic interaction in molecular modeling, the microscopic characteristics of polymer-grafted nanoparticles, and the factors controlling the self-assembly structure in polymer/nanoparticle composites.
引文
1 Whitesides GM,Boncheva M.Proc Natl Acad Sci USA,2002,99:4769-4774
    2 Shen J,Sun J.Bull Chin Acad Sci,2004,19:420-424(in Chinese)[沈家骢,孙俊奇.中国科学院院刊,2004,19:420?424]
    3 Lehn JM.Supramolecular Chemistry,Concept and Perspectives.Germany:Wiley VCH,1995
    4 Jeffrey GA.An Introduction to Hydrogen Bonding.New York:Oxford University Press,1997
    5 Tsuzuki S.Annu Rep Prog Chem Sect C-Phys Chem,2012,108:69-95
    6 Hunter CA,Sanders JKM.J Am Chem Soc,1990,112:5525-5534
    7 Winterton RHS.Contemporary Phys,1970,11:559-574
    8 Politzer P,Lane P,Concha MC,Ma Y,Murray JS.J Mol Model,2007,13:305-311
    9 Zahn S,Frank R,Hey-Hawkins E,Kirchner B.Chem Eur J,2011,17:6034-6038
    10 Wang W,Ji B,Zhang Y.J Phys Chem A,2009,113:8132-8135
    11 Moszynski R,Wormer PES,Jeziorski B,van der Avoird A.J Chem Phys,1995,103:8058-8074
    12 Bader RFW.Chem Rev,1991,91:893-928
    13 Reed AE,Weinhold F,Curtiss LA,Pochatko DJ.J Chem Phys,1986,84:5687-5705
    14 Savin A,Silvi B,Colonna F.Can J Chem,1996,74:1088-1096
    15 Huang Z,Sun H,Zhang H,Wang Y,Li F.J Comput Chem,2011,32:2055-2063
    16 Zhou F,Han J,Liu R,Li P,Zhang H.Comput Theor Chem,2014,1044:80-86
    17 Zhou F,Liu R,Li P,Zhang H.New J Chem,2015,39:1611-1618
    18 Vatamanu J,Borodin O,Bedrov D.J Chem Theor Comput,2018,14:768-783
    19 Zhou F,Liu R,Tang J,Li P,Cui Y,Zhang H.J Mol Model,2016,22:29
    20 Lowe BM,Skylaris CK,Green NG,Shibuta Y,Sakata T.Jpn J Appl Phys,2018,57:04FM02
    21 Pan C,Hu Z.J Chem Theor Comput,2014,10:534-542
    22 Hu Z.Chem Commun,2014,50:14397-14400
    23 Pan C,Hu Z.Sci China Chem,2015,58:1044-1050
    24 Yi S,Pan C,Hu L,Hu Z.Phys Chem Chem Phys,2017,19:18514-18518
    25 Hu Z.J Chem Theor Comput,2014,10:5254-5264
    26 Yi SS,Pan C,Hu ZH.Chin Phys B,2015,24:120201
    27 Yi S,Pan C,Hu Z.J Chem Phys,2017,147:126101
    28 Pan C,Yi S,Hu Z.Phys Chem Chem Phys,2017,19:4861-4876
    29 dos Santos AP,Girotto M,Levin Y.J Chem Phys,2016,144:144103
    30 Zhao B,Zhu L.J Am Chem Soc,2006,128:4574-4575
    31 Li D,Sheng X,Zhao B.J Am Chem Soc,2005,127:6248-6256
    32 von Werne T,Patten TE.J Am Chem Soc,2001,123:7497-7505
    33 Chen X,Armes SP.Adv Mater,2003,15:1558-1562
    34 Pyun J,Jia S,Kowalewski T,Patterson GD,Matyjaszewski K.Macromolecules,2003,36:5094-5104
    35 Perruchot C,Khan MA,Kamitsi A,Armes SP,von Werne T,Patten TE.Langmuir,2001,17:4479-4481
    36 Akcora P,Liu H,Kumar SK,Moll J,Li Y,Benicewicz BC,Schadler LS,Acehan D,Panagiotopoulos AZ,Pryamitsyn V,Ganesan V,Ilavsky J,Thiyagarajan P,Colby RH,Douglas JF.Nat Mater,2009,8:354-359
    37 Xue YH,Quan W,Qu FH,Liu H.Mol Simul,2015,41:298-310
    38 Xue YH,Zhu YL,Quan W,Qu FH,Han C,Fan JT,Liu H.Phys Chem Chem Phys,2013,15:15356-15364
    39 Xing JY,Lu ZY,Liu H,Xue YH.Phys Chem Chem Phys,2018,20:2066-2074
    40 Liu H,Zhao HY,Müller-Plathe F,Qian HJ,Sun ZY,Lu ZY.Macromolecules,2018,51:3758-3766
    41 Akcora P,Kumar SK,Moll J,Lewis S,Schadler LS,Li Y,Benicewicz BC,Sandy A,Narayanan S,Ilavsky J,Thiyagarajan P,Colby RH,Douglas JF.Macromolecules,2010,43:1003-1010
    42 Moll JF,Akcora P,Rungta A,Gong S,Colby RH,Benicewicz BC,Kumar SK.Macromolecules,2011,44:7473-7477
    43 Chen Q,Gong S,Moll J,Zhao D,Kumar SK,Colby RH.ACS Macro Lett,2015,4:398-402
    44 Maillard D,Kumar SK,Fragneaud B,Kysar JW,Rungta A,Benicewicz BC,Deng H,Brinson LC,Douglas JF.Nano Lett,2012,12:3909-3914
    45 Papakonstantopoulos GJ,Yoshimoto K,Doxastakis M,Nealey PF,de Pablo JJ.Phys Rev E,2005,72:031801
    46 Papakonstantopoulos GJ,Doxastakis M,Nealey PF,Barrat JL,de Pablo JJ.Phys Rev E,2007,75:031803
    47 Yoshimoto K,Jain TS,Van Workum K,Nealey PF,de Pablo JJ.Phys Rev Lett,2004,93:175501
    48 Li Y,Tao P,Viswanath A,Benicewicz BC,Schadler LS.Langmuir,2013,29:1211-1220
    49 Kumar SK,Jouault N,Benicewicz B,Neely T.Macromolecules,2013,46:3199-3214
    50 Ferreira PG,Ajdari A,Leibler L.Macromolecules,1998,31:3994-4003
    51 Srivastava S,Agarwal P,Archer LA.Langmuir,2012,28:6276-6281
    52 Rungta A,Natarajan B,Neely T,Dukes D,Schadler LS,Benicewicz BC.Macromolecules,2012,45:9303-9311
    53 Shi R,Qian HJ,Lu ZY.Phys Chem Chem Phys,2017,19:16524-16532