基于阻抗控制的机械臂末端工具的柔顺控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Compliance Control of End-Effector of Space Manipulator Based on Impedance Control
  • 作者:李焕 ; 王奉文 ; 徐世杰 ; 侯月阳 ; 卢山
  • 英文作者:LI Huan;WANG Fengwen;XU Shijie;HOU Yueyang;LU Shan;Beihang University;Shanghai Aerospace Control Technology Institute;Shanghai Key Laboratory of Aerospace Intelligent Control Technology;
  • 关键词:空间机械臂 ; 控制 ; 末端柔顺 ; 阻抗控制
  • 英文关键词:space manipulator;;force control;;end compliance;;impedance control
  • 中文刊名:KJKZ
  • 英文刊名:Aerospace Control and Application
  • 机构:北京航空航天大学;上海航天控制技术研究所;上海市空间智能控制技术重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:空间控制技术与应用
  • 年:2019
  • 期:v.45;No.262
  • 基金:上海市自然科学基金(16ZR1415600);; 上海市科技人才计划(17XD1420700)资助项目~~
  • 语种:中文;
  • 页:KJKZ201901016
  • 页数:7
  • CN:01
  • ISSN:11-5664/V
  • 分类号:23-29
摘要
当空间机械臂执行任务时与环境相接触,机械臂末端工具和目标之间可能存在很大的接触力.为了将接触力限制在一定范围内,本文提出了基于位置控制内环的阻抗控制对机械臂末端精细工具进行柔顺控制的方法.该方法建立了机械臂末端工具的位姿与接触力/力矩之间的动态关系,使用关节位置/速度传感器和腕力传感器的测量来得到关节角、关节角速度和末端接触力反馈,使得机械臂末端执行器根据反馈作出相应的顺应性运动.研究将阻抗控制应用在复杂精细的末端工具上,将位置和姿态同时纳入柔顺控制器的设计中,实现了末端位置和姿态的综合控制.最后本文以螺钉拆卸为例,对提出的末端柔顺控制律进行位姿控制和接触力控制的仿真验证.仿真结果表明,本文设计的柔顺控制器可以有效控制接触力在合理范围内,并在误差很小的范围内实现位置和姿态的综合控制,对实际工程应用中,机械臂末端的精细操作具有指导意义.
        When the space manipulator in contact with the environment during the task, there may be a large contact force between the end-effector and the target. In order to limit the contact force within a certain range, a compliance control method based on impedance control including inner position control is proposed in this paper. This method establishes the dynamic relationship between the position of the endeffector and the contact force, using the measurement of joint position/velocity sensor and wrist force sensor to obtain the feedback of joint angle, joint angular velocity and contact force. And then the corresponding acceleration is produced to make the end-effector perform the corresponding compliant motion.The study applies impedance control to complex and sophisticated end tools, incorporating position and attitude into the design of the compliant controller, enabling comprehensive control of the end position and attitude. In the end, the screw disassembly is taken as an example to verify the pose control and contact force control of the proposed end compliance control law. Finally, taking the screw removal as an example,the proposed end compliance control law is simulated to verify the position and contact force control effects. The simulation results show that the proposed compliant controller can effectively control the contact force within a reasonable range and achieve integrated control of position and attitude.
引文
[1] SICILIANO B. Springer handbook of robotics[M]. Berlin:Springer Berlin Heidelberg, 2008.
    [2] YIN Y H. Research on robot compliance control[J].Robot, 1998, 20(3):232-240.
    [3] DONG X X. Study on compliance control method of space manipulators[D]. Harbin:Harbin Institute of Technology, 2013.
    [4] RAIBERT M H, CRAIG J J. Hybrid position/force control of manipulators[J]. Journal of Dynamic Systems,Meas-urement, and Control, 1981,102(2):126-133.
    [5] WEST H,ASADA H. A method for the design of hybrid position/force controllers for manipulators con-strained by contact with the environment[C]//IEEE International Conference on Robotics and Automation. New York:IEEE, 1985.
    [6] HOGAN N. Impedance control:an approach to manipulation[C]//American Control Conference. New York:IEEE, 1984.
    [7] SERAJI H,COLBAUGH R. Adaptive force-based impedance control[C]//International Conference on Intelligent Robots and Systems. New York:IEEE, 1993.
    [8]JUNG S, YIM S B, HSIA T C. Experimental studies of neural network impedance force control for robot manipulators[C]//IEEE International Conference on Robotics and Automation. New York:IEEE,2001.
    [9]NAKANISHI H, YOSHIDA K. Impedance control for free-flying space robots-basic equations and applications[C]//Intelligent Robots and Systems, 2006 IEEE/RSJ International.New York:IEEE, 2006:3137-3142.
    [10] UYAMA N,NARUMI T. Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative satellite[J]. IFAC-Papers OnLine, 2016,49(17):230-235.
    [11]杨振.基于阻抗控制的机器人柔顺性控制方法研究[D].南京:东南大学,2005.
    [12]张磊.基于阻抗控制的空间机械臂辅助对接研究[D].哈尔滨:哈尔滨工业大学,2013.
    [13]危清清,刘志全,王耀兵,等.柔性机械臂辅助空间站舱段对接阻抗控制[J].中国空间科学技术,2014, 34(6):57-64.WEI Q Q,LIU Z Q,WANG Y B. Impedance control of space flexible manipulator system assisted docking of space station[J]. Chinese Space Science and Technology,2014, 34(6):57-64.
    [14]熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,1999.
    [15] LIEGEOIS B A. Automatic supervisory control of the configuration and behavior of multibody mechanisms[J]. IEEE Transactions on Systems Man&Cybernetics, 2007, 7(12):868-871.
    [16]黄剑斌,李志.基于阻抗控制的空间机械臂接触控制与迹规划技术[J].航天器工程,2013,22(4):43-48.HUANG J B,LI Z. Space manipulator interaction control and trajector generation based on cartesian impedance control[J]. Spacecraft Engineering,2013,22(4):43-48.
    [17] SICILIANO B, VILLANI L. Robot force control[J].Springer Berlin, 2013,36(2):20-29.
    [18]于学文,侯月阳,卢山,等.一种机械臂末端旋拧工具的设计[J].机电工程,2017, 34(9):971-975.YU X W, HOU Y Y, LU S, et al. Design of a manipulator end effector used to twist screws[J]. Mechanical&Electrical Engineering Magazine, 2017, 34(9):971-975.