耐温耐盐增稠型表面活性剂体系的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of temperature and salt resistant thickening surfactant system
  • 作者:范锡彦
  • 英文作者:Fan Xiyan;Sinopec Pudong Production Plant of Zhongyuan Oil?eld Branch;
  • 关键词:耐温耐盐 ; 增稠型 ; 表面活性剂 ; 改性超细二氧化硅 ; 界面张力 ; 采收率
  • 英文关键词:temperature and salt resistances;;thickening type;;surfactant;;modified ultrafine silica;;interfacial tension;;recovery ratio
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:中国石化中原油田分公司濮东采油厂;
  • 出版日期:2019-04-15
  • 出版单位:石油化工
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:SYHG201904011
  • 页数:6
  • CN:04
  • ISSN:11-2361/TQ
  • 分类号:68-73
摘要
在表面活性剂S10中添加了改性超细二氧化硅(CXS)作为增稠剂,得到了增稠型表面活性剂体系S10/CXS。研究了CXS添加量对体系黏度、油水界面张力的影响,评价了S10/CXS体系的耐温耐盐性能、封堵性能和提高采收率能力。实验结果表明,CXS可以提高表面活性剂溶液的黏度,增稠作用明显;0.5%S10/2.3%CXS体系的油水界面张力可达到超低(10~(-3) mN/m)级别;该体系耐温耐盐性能好;在非均质并联填砂模型驱替实验中,S10/CXS体系较S10表活剂驱可提高采收率15.9百分点。CXS的聚并封堵作用可提高波及体积,S10可降低油水界面张力从而提高洗油效率,在两者的协同作用下,S10/CXS体系具有较好的驱油效果。
        By adding modified ultrafine silica(CXS) into the surfactant S10 as a thickening agent,a thickening surfactant system S10/CXS was obtained. The effects of CXS addition on the system viscosity and oil-water interfacial tension were studied. The temperature and salt resistances,plugging performance and enhanced oil recovery capability of the system were evaluated. The experimental results showed that CXS can improve the viscosity of surfactant solution with obvious thickening effect;the oil-water interfacial tension of 0.5%S10/2.3%CXS system can reach an ultra-low level(10~(-3) m N/m);the system has good temperature and salt resistance;and in the displacement experiment of heterogeneous parallel sand filling model,the recovery of S10/CXS system can be increased by 15.9 percentage points compared with that of S10 surfactant flooding. The coalescence and plugging effect of CXS can increase sweep volume,and S10 can reduce oil-water interfacial tension and thus improve oil washing efficiency. Under the synergistic effect of the two,the S10/CXS system has better oil displacement effect.
引文
[1]叶仲斌.提高采收率原理[M].北京:石油工业出版社,2007:25-40.
    [2]廖广志,王强,王红庄,等.化学驱开发现状与前景展望[J].石油学报,2017,38(2):196-207.
    [3]张明安.二元复合体系微观驱油机理可视化实验[J].油气地质与采收率,2013,20(3):79-82,116.
    [4]曹绪龙.非均相复合驱油体系设计与性能评价[J].石油学报:石油加工,2013,29(1):115-121.
    [5]周亚洲,殷代印,张承丽.大庆油区三元复合驱耐碱性调剖剂的研制与段塞组合优化[J].油气地质与采收率,2014,21(5):73-76.
    [6]肖传敏.无碱二元驱提高波及因数和驱油效率对采收率贡献研究[J].石油天然气学报,2014,36(5):132-135.
    [7]龚保强,许振波.濮城油田沙二上2+3油藏条件下体膨剂与聚合物混合调驱实验研究[J].油田化学,2007(1):79-82.
    [8]杨永超,胡艳霞.濮城西区沙二上2+3油藏PCS调驱技术研究及其应用[J].钻采工艺,2001,24(3):29-33.
    [9]王崇阳,蒲万芬,赵田红,等.高温高盐油藏新型表面活性剂微球复配体系调驱实验[J].油气地质与采收率,2015,22(6):107-111.
    [10]梁丹,冯国智,谢晓庆,等.聚合物驱阶段注采动态特征及影响因素分析[J].特种油气藏,2014,21(5):75-78.
    [11]曹瑞波,韩培慧,高淑玲.不同驱油剂应用于聚合物驱油后油层的适应性分析[J].特种油气藏,2012,19(4):100-103.
    [12]吴志伟,岳湘安,赵方剑,等.无碱二元体系在孤东七区油藏流变性和界面活性分布[J].石油钻采工艺,2012,34(6):85-89.
    [13]吕鑫,张建,姜伟.聚合物/表面活性剂二元复合驱研究进展[J].西南石油大学学报:自然科学版,2008,30(3):127-130.
    [14]任素霞,郜毅,杨延涛,等.生物质基纳米二氧化硅的表面改性研究[J].河南科学,2014,32(8):1599-1604.
    [15]郑丽华,刘钦甫,程宏飞.白炭黑表面改性研究现状[J].中国非金属矿工业导刊,2008(1):12-15.
    [16]Li Xiaohong,Cao Zhi,Zhang Zhijun,et al.Surface-modification in situ of nano-SiO2 and its structure and tribological properties[J].Appl Surf Sci,2006,252(22):7856-7861.
    [17]王鹏程.纳米二氧化硅的分散与表面改性[D].广州:华南理工大学.2011.
    [18]申士和,李振华,郑景新.气相二氧化硅的增稠触变机理及产品应用[J].有机硅氟资讯,2008(9):46-48.
    [19]郑超.表面改性纳米二氧化硅的制备及其对HPAM驱油性能的影响[D].郑州:河南大学,2017.
    [20]国家石油和化学工业局.SY/T 5370-1999表面及界面张力测定方法[S].北京:石油工业出版社,1999.