掺杂不同价态离子的SrFeO_(3-δ)钙钛矿氧化物的电化学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemical Properties of SrFeO_(3-δ) Perovskite Type Oxides Doped with Different Valence of Ion
  • 作者:于秀玲 ; 梁雪梅 ; 李雪
  • 英文作者:YU Xiuling;LIANG Xuemei;LI Xue;College of Information Technology,Jilin Agricultural University;
  • 关键词:固体氧化物燃料电池 ; 钙钛矿氧化物 ; 电导率 ; 阴极 ; 极化电阻
  • 英文关键词:solid oxide fuel cell;;perovskite oxide;;electrical conductivity;;cathode;;polarization resistances
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:吉林农业大学信息技术学院;
  • 出版日期:2019-06-26
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:吉林省教育厅科学技术研究项目(2016167)~~
  • 语种:中文;
  • 页:CLDB201914006
  • 页数:6
  • CN:14
  • ISSN:50-1078/TB
  • 分类号:27-32
摘要
采用固相法制备SrFe_(0. 9)M_(0. 1)O_(3-δ)(M=Zn、Ga、Sn、Nb、W)系列钙钛矿氧化物,并讨论了晶体结构、EDS、化学兼容性、电导率以及作为固体氧化物燃料电池(SOFC)阴极材料的电化学性能。XRD结果显示,掺杂金属离子Zn~(2+)、Ga~(3+)、Sn~(4+)、Nb~(5+)和W~(6+)很好地稳定了SrFeO_(3-δ)钙钛矿的结构,并且所有样品均呈现单一钙钛矿结构,没有产生明显的杂相。EDS图谱显示合成的样品具有很好的化学均匀性。在950℃以下SrFe_(0. 9)M_(0. 1)-O_(3-δ)(M=Zn、Ga、Sn、Nb、W)阴极与LSGM电解质材料都具有良好的化学相容性。随着掺杂离子的价态升高,样品的电导率最大值逐渐降低。在800℃下测量掺杂金属离子Zn~(2+)、Ga~(3+)、Sn~(4+)、Nb~(5+)和W~(6+)的SrFeO_(3-δ)阴极的极化电阻,得出SrFe_(0. 9)Zn_(0. 1)O_(3-δ)样品的极化电阻值最小的结果。以SrFe_(0. 9)M_(0. 1)O_(3-δ)(M=Zn、Ga、Sn、Nb、W)作为阴极、LSGM为电解质的单电池在800℃时的最大功率密度随着掺杂离子价态的升高而下降,掺杂Zn的样品的功率密度最大值达到了593 mW·cm~(-2)。
        Samples of SrFe_(0. 9)M_(0. 1) O_(3-δ)( M=Zn,Ga,Sn,Nb,W) were synthesized via the solid-phase reaction. The crystal structure,EDS,chemical compatibility,conductivity and electrochemical properties as cathode materials for solid oxide fuel cell were also discussed. The XRD patterns reveal that perovskite structure of SrFeO_(3-δ)is well stabilized by doping metal ions Zn~(2+),Ga~(3+),Sn~(4+),Nb~(5+)and W~(6+),and all the samples show a single perovskite structure. No any impurity peaks are observed in the XRD patterns. The EDS pattern shows that the synthesized samples have a good chemical uniformity. The facts show that the SrFe_(0. 9)M_(0. 1) O_(3-δ)( M=Zn,Ga,Sn,Nb,W) cathode have a good chemical compatibility with LSGM electrolyte at temperatures below 950 ℃. With the increase of valence state of doped ions,the maximum conductivity values gradually reduce. The SrFeO_(3-δ)cathodic polarization resistance of doping metal ions Zn~(2+),Ga~(3+),Sn~(4+),Nb~(5+)and W~(6+)is measured at 800 ℃,the polarization resistance of SrFe_(0. 9)Zn_(0. 1) O_(3-δ)sample is the smallest. The maximum power density of single cells with SrFe_(0. 9)M_(0. 1) O_(3-δ)( M =Zn,Ga,Sn,Nb,W) as cathode and LSGM as electrolyte decreases with the increase of valence state of doping ions at 800 ℃. The peak power density of SrFe_(0. 9)Zn_(0. 1) O_(3-δ)sample reaches 593 mW·cm~(-2) at 800 ℃.
引文
1 Niu Y,Zhou W,Sunarso J,et al. Journal of Materials Chemistry,2010,20,9619.
    2 Yoo J,Vema A,Wang S,et al. Journal of the Electrochemical Society,2005,152,A497.
    3 Zaspalis V,Evdou A,Nalbandian L. Fuel,2010,89,1265.
    4 Hodges J P,Short S,Yorgensen J D,et al. Journal of Solid State Chemistry,2000,151,190.
    5 Savinskaya O A,Nemudry A P,Lyakhov N Z. Inorganic Materials,2007,43,1350.
    6 Kharton V V,Viskup A P,Kovlevsky A V,et al. Solid State Ionics,2000,133,57.
    7 Waerenborgh J C,Rojas D P,Shaula A L,et al. Materials Letters,2005,59,1644.
    8 Patrakeev M V,Kharton V V,Bakhteeva Y A,et al. Solid State Sciences,2006,8,476.
    9 Patrakeev M V,Markov A A,Leonidov I A,et al. Solid State Ionics,2006,177,1757.
    10 Anikina P V,Markov A A,Patakeev M V,et al. Solid State Sciences,2009,11,1156.
    11 Jiang S,Zhou W,Niu Y,et al. ChemSusChem,2012,5,2023.
    12 Xiao G L,Liu Q,Wang S W,et al. Journal of Power Sources,2012,202,63.
    13 Markov A A,Leonidov I A,Patrakeev M V,et al. Solid State Ionics,2008,179,1050.
    14 Zhou Q J,Zhang L L,He T M. Electrochemistry Communications,2010,12,285.
    15 Niu Y,Sunarso J,Liang F,et al. Journal of the Electrochemical Society,2011,158,B132.
    16 Yu X L,Log W,He T M,et al. Electrochimica Acta,2014,123,426.
    17 Li Q,Xia T,Sun L P,et al. Electrochimica Acta,2014,150,151.
    18 Santos-Gómez L dos,Compana J M,Bruque S,et al. Journal of Power Sources,2015,279,419.
    19 Alice G,Clément N,Sébastien F,et al. Electrochimica Acta,2017,236,328.
    20 Anikina P V,Mmarkov A A,Patrakeev M V,et al. Russian Journal of Physical Chemistry A,2009,83,699.
    21 Buscaglia M T,Buscaglia V,Viviani M,et al. Journal of the European Ceramic Society,2000,20,1997.
    22 Hagemann H J,Hennings D. Journal of the American Ceramic Society,1981,64(10),590.
    23 Kaus I,Anderson H U. Solid State Ionics,2000,129,189.
    24 Shaula A L,Kharton V V,Patrakeev M V,et al. Ionics,2004,10,378.
    25 Xiang J,Guo Y T,Chu Y Q,et al. Acta Physica Sinica,2011,60(2),27203(in Chinese).向军,郭银涛,褚艳秋,等.物理学报,2011,60(2),27203.
    26 Leng Y J,Chan S H,Khor K A,et al. International Journal of Hydrogen Energy,2004,29,1025.
    27 Baek S W,Kim J H,Bae J. Solid State Ionics,2008,179,1570.
    28 Ding X F,Gao L,Du X J,et al. Rare Metal Materials and Engineering,2007,36(S2),602(in Chinese).丁锡锋,高凌,杜雪娟,等.稀有金属材料与工程,2007,36(S2),602.