蓄意攻击策略下危险品运输网络级联失效仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of Cascading Failure on Hazardous Materials Transportation Network under Targeted Attack
  • 作者:种鹏云 ; 尹惠
  • 英文作者:CHONG Pengyun;YIN Hui;Traffic Safety Research Center,Department of Transportation of Yunnan Province,Yunnan Science Research Institute of Communication;Power China Kunming Engineering Corporation Limited;
  • 关键词:公路运输 ; 级联失效 ; 复杂网络 ; 危险品运输网络 ; 蓄意攻击策略
  • 英文关键词:highway transportation;;cascading failure;;complex network;;hazardous materials transportation network;;targeted attack strategies
  • 中文刊名:FZXT
  • 英文刊名:Complex Systems and Complexity Science
  • 机构:云南省交通科学研究院云南省交通运输厅安全研究中心;中国电建集团昆明勘测设计研究院有限公司;
  • 出版日期:2018-03-15
  • 出版单位:复杂系统与复杂性科学
  • 年:2018
  • 期:v.15
  • 基金:国家自然科学基金(41501174,71563023);; 云南省科学技术厅技术开发研究专项(2016DC053)
  • 语种:中文;
  • 页:FZXT201801008
  • 页数:12
  • CN:01
  • ISSN:37-1402/N
  • 分类号:48-58+77
摘要
在构建危险品运输网络级联失效模型的基础上,通过控制模型参数,研究了危险品运输网络级联失效特性及不同蓄意攻击策略对网络级联失效的影响。基于大连市危险品道路运输网络特征值,构建了基于WS小世界网络的危险品运输复杂网络生成算法;提出了具有时间阶段特性并带有可调参数的节点初始负载模型,确定了"失效"节点负载分配的择优分配概率模型和节点容量模型,并利用节点负载动态分配概率值,动态描述节点"正常""暂停"和"失效"三种状态,从而构建危险品运输网络级联失效机制模型;以网络级联失效平均规模和相变临界值作为网络抗毁性度量,通过构建两种蓄意攻击策略,对比研究了不同攻击策略对危险品运输网络级联失效抗毁性的影响。仿真结果及理论分析表明:1)构建的危险品运输网络级联失效模型是有效的;2)节点容量系数、过载承受能力调节参数和网络平均节点的度对蓄意攻击策略的变化是不敏感的,但通过提高它们的取值,能够有效降低网络级联失效平均规模,提高网络抗毁性;3)对于节点度的降序攻击策略,可调参数越小,网络抗毁性越强,但对于节点度的升序攻击策略,可调参数越大,网络抗毁性越强,且两种攻击策略下的相变临界值曲线在可调参数为0.5处相交。这些结论为防范蓄意攻击策略的制定提供理论依据。
        Based on the model of cascading failure on hazardous materials transportation network(HMTN),this paper researched the characteristics of cascading failure on HMTN and the different targeted attack strategies to the impact of cascading failure on HMTN by controlling the model parameters.Firstly,based on the parameters of HMTN of Dalian city,it established the network generation algorithm of HMTN based on WS small-world network.Secondly,it established the node initial load model with time stage characteristics and tunable parameters,and established the preferential allocation probability model to"failure"node and node capacity model,by using node load dynamic allocation probability value,it described node in the "normal","pause"and"failure"three states,then the mechanism model of cascading failure on HMTN was established.Finally,by establishing two kinds of targeted attack strategies and regarding the average size of network cascading failure and phase transition critical value as the measure of invulnerability,a comparative study of different targeted attack strategies to invulnerability of HMTN is researched.Simulation results and theoretical analysis show that:1)the model of cascading failure on HMTN is reasonable and effective;2)the node capacity factor and overload capacity adjustment parameter aren't sensitive to the change of targeted attack strategies,but it's useful to reduce the average size of network cascading failure and improve the invulnerability of HMTN by increasing their value;3)For the targeted attack strategies of node degree in descending order,the smaller the tunable parameter is,the stronger the invulnerability of HMTN will be,but for the targeted attack strategies of node degree in ascending order,the bigger the tunable parameter is,the stronger the invulnerability of HMTN will be,and the intersection of their phase transition critical value curves at tunable parameters is equal to 0.5.These results provide a theoretical basis to prevent the terrorist attack for HMTN.
引文
[1]种鹏云,帅斌,陈钢铁.恐怖袭击下危险品运输网络级联失效抗毁性建模与仿真[J].计算机应用研究,2013,30(1):107-110.Chong Pengyun,Shuai Bin,Chen Gangtie.Model and simulation on cascading failure survivability of hazardous materials transportation network under terrorist attack[J].Application Research of Computers.2013,30(1):107-110.
    [2]赵国敏,刘茂,张青松,等.基于博弈论的地铁车站蓄意攻击风险定量研究[J].安全与环境学报,2006,6(3):47-50.Zhao Guomin,Liu Mao,Zhang Qingsong,et al.Terror attack risk assessment of subway station based of game theory[J].Journal of Safety and Environment.2006,6(3):47-50.
    [3]Albert R,Jeong H,Barabási A L.Error and attack tolerance of complex networks[J].Nature,2000,406(6794):387-482.
    [4]Albert R,Barabási A L.Statistical mechanics of complex networks[J].Reviews o f Modern Physics,2002,74(1):47-97.
    [5]Callaway D S,Newman M E J,Strogatz S H,et al.Network robustness and fragility:Percolation on random graphs[J].Physical Review Letters,2000,85(25):5468-5471.
    [6]Bao Z J,Cao Y J,Ding L J,et al.Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks[J].Physica A,2009,388(20):4491-4498.
    [7]Motter A E.Cascade control and defense in complex networks[J].Physical Review Letters,2004,93(9):098701.
    [8]Crucitti P,Latora V,Marchiori M.Model for cascading failures in complex networks[J].Physical Review E,2004,69(4):045104.
    [9]Li P,Wang B H,Sun H,et al.A limited resource model of fault-tolerant capability against cascading failure of complex network[J].The European Physical Journal B,2008,62(1):101-104.
    [10]Wang W X,Chen G R.Universal robustness characteristic of weighted networks against cascading failure[J].Physical Review E,2008,77(2):026101.
    [11]郑啸,陈建平,邵佳丽,等.基于复杂网络理论的北京公交网络拓扑性质分析[J].物理学报.2012,61(19):95-105.Zheng Xiao,Chen Jianping,Shao Jiali,et al.Analysis on topological properties of Beijing urban public transit based on complex network theory[J].Acta Phys Sin,2012,61(19):95-105.
    [12]种鹏云,帅斌,尹惠.基于复杂网络的危险品运输网络抗毁性仿真[J].复杂系统与复杂性科学,2014,11(4):10-18.Chong Pengyun,Shuai Bin,Yin Hui.Invulnerability simulation analysis of hazardous materials transportation network based on complex network[J].Complex Systems and Complexity Science,2014,11(4):10-18.
    [13]种鹏云,帅斌.危险品运输关联网络级联失效建模及耦合特性[J].交通运输系统工程与信息,2015,15(5):150-156.Chong Pengyun,Shuai Bin.Cascading failure model and coupling properties for interdependent networks of hazardous materials transportation[J].Journal of Transportation Systems Engineering and Information Technology,2015,15(5):150-156.
    [14]Chong P,Shuai B,Deng S,et al.Analysis on topological properties of dalian hazardous materials road transportation network[J].Mathematical Problems in Engineering,2015,2015(1):1-11.