高Li含量Al-Cu-Li合金时效析出相的分布与演化(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and evolution of aging precipitates in Al-Cu-Li alloy with high Li concentration
  • 作者:李劲风 ; 黄嘉蕾 ; 刘丹阳 ; 陈永来 ; 张绪虎 ; 马鹏程
  • 英文作者:Jin-feng LI;Jia-lei HUANG;Dan-yang LIU;Yong-lai CHEN;Xu-hu ZHANG;Peng-cheng MA;School of Materials Science and Engineering, Central South University;Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University;Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University;Aerospace Research Institute of Materials and Processing Technology;
  • 关键词:铝锂合金 ; 析出相 ; T6时效 ; T8时效 ; 时效温度
  • 英文关键词:Al-Li alloy;;precipitate;;T6 aging;;T8 aging;;aging temperature
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学材料科学与工程学院;中南大学有色金属材料科学与工程教育部重点实验室;中南大学有色金属先进结构材料与制造协同创新中心;航天材料及工艺研究所;
  • 出版日期:2019-01-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Projection(2013AA032401)supported by the National High-Tech Research and Development Program of China
  • 语种:英文;
  • 页:ZYSY201901002
  • 页数:10
  • CN:01
  • ISSN:43-1239/TG
  • 分类号:21-30
摘要
采用透射电镜研究高Li含量(2.14%,质量分数)1460铝锂合金T6(145、160、175℃)及T8双级时效(4%预变形,130℃,24 h+160℃)时析出相的演化及分布。合金的时效析出相包括δ'(Al_3Li)相和T1(Al_2CuL i)相,其中δ'相为晶内优先析出相。低温(145℃)T6时效时,晶内还形成大量均匀分布而且稳定的δ'/GPI/δ'复合相。较高温度(160℃及175℃) T6时效时,还会析出大量T1相;T1相优先于(亚)晶界形核,而后随时效时间延长,逐渐在晶内析出。T8双级时效时,晶内可形成δ'/GPI/δ'复合相及T1相;其中δ'/GPI/δ'复合相开始形成于第一级低温时效,并于第二级较高温度时效时一直稳定存在;T1相则形成于第二级时效,且T8时效时的预变形促进T1相在晶内快速析出。
        The evolution and distribution of the aging precipitates in 1460 Al-Li alloy with high Li concentration(2.14%, mass fraction) during T6 aging and two-step T8(4% predeformation) aging were investigated through TEM. The aging precipitates include δ'(Al_3Li) and T1(Al_2CuLi) phases, of which the δ' phases are formed first in grain interiors. A lot of δ'/GPI/δ' composite precipitates in which GPI zones are flanked with a pair of δ' phases, are formed at 145 ℃ of T6 aging, which are thermally stable. At 160 ℃ and 175 ℃ of T6 aging, many T1 phases nucleate first at subgrain boundaries and grain boundaries, and then form and grow within grains. As to the T8 aging, the δ'/GPI/δ' composite precipitates are formed during the first-step aging at 130 ℃ for 20 h, which are thermally stable during the second-step aging at 160 ℃. The plastic predeformation accelerates T1 nucleation within grains during the second-step aging at 160 ℃.
引文
[1]RIOJA R J,LIU J.The evolution of Al-Li base products for aerospace and space applications[J].Metallurgical Materials Transaction A,2012,43(9):3325-3337.
    [2]ZHENG Zi-qiao,LI Jin-feng,CHEN Zhi-guo,LI Hong-ying,LIShi-chen,TAN Cheng-yu.Alloying and microstructural evolution of Al-Li alloys[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2337-2351(in Chinese)
    [3]LI Jin-feng,YE Zhi-hao,LIU Dan-yang,CHEN Yong-lai,ZHANGXu-hu,XU Xiu-zhi,ZHENG Zi-qiao.Influence of pre-deformation on aging precipitation behavior of three Al-Cu-Li alloys[J].Acta Metallurgica Sinica(English Letters),2017,30(2):133-145.
    [4]DECREUS B,de GEUSER F,DESCHAMPS A,DONNADIEU P,SIGLI C.Precipitation sequence in two Al-Li-Cu alloys[J].Solid State Phenomenon,2011,172-174:267-272.
    [5]GAO Zhen,CHEN Jiang-hua,DUAN Shi-yun,YANG Xiu-bo,WUCui-lan.Complex precipitation sequences of Al-Cu-Li-(Mg)alloys characterized in relation to thermal ageing processes[J].Acta Metallurgica Sinica(English Letters),2016,29(1):94-103.
    [6]DECREUS B,DESCHAMPS A,GEUSER F De,DONNADIEU P,SIGLI C,WEYLAND M.The influence of Cu/Li ratio on precipitation in Al-Cu-Li-x alloys[J].Acta Materialia,2013,61:2207-2218.
    [7]LI Jin-feng,LIU Ping-li,CHEN Yong-lai,ZHANG Xu-hu,ZHENGZi-qiao.Microstructures and mechanical properties of Mg,Ag and Zn multi-microalloyed Al-(3.2-3.8)Cu-(1.0-1.4)Li alloys[J].Transactions of Nonferrous Metals Society of China,2015,25(7):2103-2112.
    [8]GABLE B M,ZHU A W,CSONTOS A A,STARKE Jr E A.The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy[J].Journal of Light Metals,2001,1:1-14.
    [9]HUANG B P,ZHENG Z Q.Independent and combined roles of trace Mg and Ag additions in properties,precipitation process and precipitation kinetics of Al-Cu-Li-(Mg)-(Ag)-Zr-Ti alloys[J].Acta Materialia,1998,46(12):4381-4393.
    [10]BALDUCCI E,CESCHINI L,MESSIERI S,WENNER S,HOLMESTAD R.Effects of overaging on microstructure and tensile properties of the 2055 Al-Cu-Li-Ag alloy[J].Materials Science and Engineering A,2017,707:221-231.
    [11]ARAULLO-PETERS V,GAULT B,GEUSER F De,DESCHAMPSA,CAIRNEY J M.Microstructural evolution during ageing of Al-Cu-Li-X alloys[J].Acta Materialia,2014,66:199-208.
    [12]GAO C,MA Y,TANG L Z,WANG P,ZHANG X.Microstructural evolution and mechanical behavior of friction spot welded 2198-T8Al-Li alloy during aging treatment[J].Materials&Design,2017,115:224-230.
    [13]MA Yun-long,LI Jin-feng,LIU Guan-ri,LIU Dan-yang,YE Zhi-hao,WANG Jie-xia,ZHENG Zi-qiao.Microstructural evolution and mechanical properties of 2195 Al-Li alloy during T8 re-aging at various temperatures following re-solution[J].The Chinese Journal of Nonferrous Metals,2017,27(2):234-242.(in Chinese)
    [14]YOSHIMURA R,KONNO T J,ABE E,HIRAGA K.Transmission electron microscopy study of the early stage of precipitates in aged Al-Li-Cu alloys[J].Acta Materialia,2003,51:2891-2903.
    [15]YOSHIMURA R,KONNO T J,ABE E,HIRAGA K.Transmission electron microscopy study of the evolution of precipitates in aged Al-Li-Cu alloys:The??and T1 phases[J].Acta Materialia,2003,51:4251-4266.
    [16]AHMADI S,ARABI H,SHOKUHFAR A.Formation mechanisms of precipitates in an Al-Cu-Li-Zr alloy and their effects on strength and electrical resistance of the alloy[J].Journal of Alloys and Compounds,2009,484:90-94.
    [17]MA Y,ZHOU X,THOMPSON G E,HASHIMOTO T,THOMSON P,FOWLES M.Distribution of intermetallics in an AA 2099-T8aluminium alloy extrusion[J].Materials Chemistry and Physics,2011,126:46-53.
    [18]FRIDLYANDER I N,DRITS A M,KRYMOVA T V.Possibility of creating weldable alloys on the basis of the system Al-Cu-Li[J].Metal Science and Heat Treatment,1991,33(9):695-699.
    [19]LIN Xiao-hong,LI Jin-feng,CHEN Yong-lai,ZHANG Xu-hu,XUXiu-zhi,ZHENG Zi-qiao.Tensile properties and microstructure of1460 Al-Li alloy sheet aged at different temperatures[J].Chinese Journal of Rare Metals,2017,41(12):1293-1298.(in Chinese)
    [20]LI Jin-feng,CHEN Yong-lai,ZHANG Xu-hu,XU Xiu-zhi,ZHENGZi-qiao.Mechanical properties and microstructure of 1460 Al-Li alloy[J].Journal of Central South University(Science and Technology),2017,48(11):2866-2872.(in Chinese)
    [21]MA Juan,YAN De-sheng,RONG Li-jian,LI Yi-yi.Effect of Sc addition on microstructure and mechanical properties of 1460 alloy[J].Progress in Natural Science:Materials International,2014,24(1):13-18.
    [22]MA Juan,YAN De-sheng,RONG Li-jian,LI Yi-yi.Effect of aging on the microstructure and mechanical properties of 1460 alloy[J].Acta Metallurgica Sinica(English Letters),2015,28(4):454-459.
    [23]WANG S C,STARINK M J.Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li)based alloys[J].International Materials Reviews,2005,50(4):193-215.
    [24]BAUMANN S F,WILLIAMS D B.A new method for the determination of the precipitate-matrix interfacial energy[J].Scripta Metallurgica,1984,18:611-616.
    [25]LOECHTE L,GIFT A,GOTTSTEIN G,HURTADO I.Simulation study on the evolution of the GP zones in Al-Cu alloys:An extended Cahn-Hilliard approach[J].Acta Materialia,2000,48:2969-2984.
    [26]DUAN S Y,WU C L,GAO Z,CHA L M,FAN T W,CHEN J H.Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys[J].Acta Materialia,2017,129:352-360.