基于GAM和GWR模型分析环境因子对南极磷虾资源分布的非线性和非静态性影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Studies on the Nonlinear and Spatial Nonstationary Effects of Environmental Factors on the Distribution of Antarctic Krill (Euphausia superba)
  • 作者:贾明秀 ; 黄六一 ; 褚建伟 ; 刘长东
  • 英文作者:JIA Ming-Xiu;HUANG Liu-Yi;CHU Jian-Wei;LIU Chang-Dong;College of Fisheries, Ocean University of China;Marine and Fisheries Supervision and Inspection Brigade of Penglai;
  • 关键词:南极磷虾 ; 渔场分布 ; 单位捕捞努力量渔获量 ; 环境因子 ; 广义加模型 ; 空间非静态性 ; 地理权重回归模型
  • 英文关键词:Antarctic krill;;fishing ground distribution;;catch per unit effort;;environmental factor;;generalized additive model;;spatial nonstationarity;;geographically weighted regression
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学水产学院;蓬莱市海洋与渔业监督检查大队;
  • 出版日期:2018-11-30 14:35
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2019
  • 期:v.49;No.297
  • 基金:南极磷虾高效捕捞技术研发项目(20150256)资助~~
  • 语种:中文;
  • 页:QDHY201908003
  • 页数:8
  • CN:08
  • ISSN:37-1414/P
  • 分类号:22-29
摘要
分析南极磷虾分布与环境因子的非线性和空间非静态性关系,对南极磷虾的高效捕捞和管理具有重要意义。本研究基于"龙腾"船2015、2016年在南设得兰群岛捕捞作业的渔捞日志数据,应用广义加模型(Generalized additive model,GAM)和地理权重回归模型(Geographical weighted regression,GWR)探究南极磷虾(Euphausia superba)渔场分布与环境因子的非线性和空间非静态性关系,并比较这2种模型的模拟性能,为南极磷虾的渔场渔情预报、资源评估和渔业管理提供基础数据。GAM模型结果显示,2015、2016年单位捕捞努力量渔获量(Catch per unit effort, CPUE)与作业水深均呈显著负相关关系(P<0.01),表明在作业水深范围内,南极磷虾在较浅水域集群密度较高;2015年CPUE与表层水温呈显著正相关关系(P<0.01),但在2016年呈显著负相关关系(P<0.01),推测是由于2年调查作业位置不同所致;CPUE与离岸距离关系不显著(P≥0.05)。GWR模型结果显示,作业水深对CPUE的影响无显著的空间变化(P>0.05);海水表温和离岸距离对CPUE的影响具显著的空间变化(P<0.01),表明这2个因子对南极磷虾渔场分布的影响在空间上不连续,存在显著空间非静态性。GAM模型可用于研究资源分布与驱动因子的一般规律;GWR模型作为全局回归模型的有效补充,可用于探究一般规律不适合的特殊区域,便于发现资源分布的"热点"区域,未来在海洋生物资源分布研究中将有广阔的应用前景。
        Antarctic krill is one of zooplanktonic crustaceans, and environmental factors are crucial for its distribution. The relationship between the fishing ground distribution of Antarctic krill and environmental factors is often indicated to be nonlinear and variable among spatial locations. Carrying out the researches in this area is meaningful for forecasting shoals of fish and fishing grounds, as well as assessing and managing krill resource. In this study, we used a generalized additive model(GAM) and a geographically weighted regression(GWR) model to analyze nonlinear and spatial nonstationary relationships between Antarctic krill distribution and environmental factors with the results from the two models based on the fishing-log data of "Longteng" boat in 2015 and 2016 compared. Results from the GAM indicated a significant negative relationship(P<0.01) between catch per unit effort(CPUE) and fishing depth in both years, implying that the aggregation density was high in the shallow water; a significant positive relationship of CPUE with sea surface temperature(SST) in 2015 which was conformed with the previous studies; a significant negative relationship in 2016 probably caused by the different sampling sites in two years; and an insignificant relationship(P>0.05) of CPUE with offshore distance in both years. Results from the GWR indicated that fishing depth affected CPUE, which changed among sample sites insignificantly and was in accordance with the results from the GAM; and the SST and offshore distance affected CPUE, which changed among sample sites significantly(P<0.01) and was not correlated with these two factors. Global regression models, such as GAM, are used to study the general rules between resource distribution and driving factors, and GWR as a complementary tool is used to explore the special zones where general rules are not applicable and have broad prospects in the research of distribution of marine living resources.
引文
[1] Carin J A,Cabell S,Davis S M,et al.Distribution of larval krill and zooplankton in association with hydrography in Marguerite Bay,Antarctic Peninsula,in Austral fall and winter 2001 described using the Video Plankton Recorder [J].Deep Sea Research Ⅱ,2008,55:455-471.
    [2] Trathan P N,Brierley A S,Brandon M A,et al.Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia[J].Fisheries Oceanography,2003,12(6):569-583.
    [3] Atkinson A,Siegel V,Pakhomov E,et al.Oceanic circumpolar habitats of Antarctic krill[J].Marine Ecology Progress Series,2008,362:1-23.
    [4] Siegel V,Loeb V.Recruitment of Antarctic krill Euphausia superba and possible causes for its variability[J].Marine Ecology Progress Series,1995,123:45-56.
    [5] 杨文杰,许柳雄.环境因素对南极磷虾资源分布影响的研究进展[J].大连海洋大学学报,2014,29(3):316-322.Yang Wenjie,Xu Liuxiong.A review:research progress on environmental factors affecting resource distribution of Antarctic krill [J].Journal of Dalian Ocean University,2014,29(3):316-322.
    [6] Kawaguchi S,Nicol S.Learning about Antarctic krill from the fishery [J].Antarctic Science,2007,19(2):219-230.
    [7] 孙珊,李显森,赵文武,等.基于广义可加模型分析时空和环境因子对2013年南极磷虾资源分布的影响[J].水产科学,2015,34(10):609-615.Sun San,Li Xianshen,Zhao Wenwu,et al.Effects of temporal,spatial and environmental factors on distribution of Antarctic krill (Euphausia superba) in 2013 based on generalized additive model [J].Fisheries Science,2015,34(10):609-615.
    [8] 朱国平,朱小艳,徐怡瑛,等.基于GAM模型分析夏秋季南奥克尼群岛南极磷虾渔场时空分布及与环境因子之间的关系[J].极地研究,2012,24(3):266-273.Zhu Guoping,Zhu Xiaoyan,Xu Yiying,et al.The spatiotemporal distribution of fishing groups for Antartic krill (Euphausia superba) around the South Orkney Islands in austral summer-autumn and its relation to environmental factors based on a generalized additive model[J].Chinese Journal of Polar Research,2012,24(3):266-273.
    [9] 朱国平.基于广义可加模型研究时间和环境因子对南极半岛北部南极磷虾渔场的影响[J].水产学报,2012,36(12):1863-1871.Zhu Guoping.Effects of temporal and environmental factors on the fishing ground of Antarctic krill (Euphausia superba) in the northern Antarctic Peninsula based on generalized additive model [J].Journal of Fisheries of China,2012,36(12):1863-1871.
    [10] 朱国平,刘子俊,徐国栋,等.基于精细尺度的冬季南乔治亚岛南极磷虾渔获率时空与环境效应[J].应用生态学报,2014,25(8):2397-2404.Zhu Guoping,Liu Zijun,Xu Guodong,et al.Spatial-temporal and environmental effects of catch rate on Antarctic krill fishery in the South Georgia Island in the austral winter season based on the fine scale data [J].Chinese Journal of Applied Ecology,2014,25(8):2397-2404.
    [11] 戴立峰,张胜茂,樊伟.南极磷虾资源丰度变化与海冰和表温的关系[J].极地研究,2012,24(4):352-360.Dai Lifeng,Zhang Shengmao,Fan Wei.The abundance index of Antarctic krill and its relationship to sea ice and sea surface temperature [J].Chinese Journal of Polar Research,2012,24(4):352-360.
    [12] 阮超,张衡,崔雪森,等.南设得兰群岛附近海域南极磷虾渔场时空分布及其与表温的关系[J].生态学杂志,2016,35(9):2435-2441.Yuan Chao,Zhang Heng,Cui Xuesen,et al.Spatial-temporal distribution of Antarctic krill fishing ground and their relationship with sea surface temperature in waters around the South Shetland Islands[J].Chinese Journal of Ecology,2016,35(9):2435-2441.
    [13] Siegel V,Reiss C S,Dietrich K S,et al.Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula[J].Deep Sea Research Part I Oceanographic Research Papers,2013,77(4):63-74.
    [14] 齐广瑞,黄洪亮,吴越,等.2013/14渔季南设得兰群岛海域南极磷虾渔场时空变动及CPUE影响因素分析[J].渔业信息与战略,2015,30(3):192-199.Qi Guangrui,Huang Hongliang,Wu Yue,et al.Spatial-temporal variation on fishing grounds and analysis on factors affecting CPUE index variations of Antarctic krill fishery in the South Shetland Islands area in 2013/14 fishing seasons[J].Fishery Information & Strategy,2015,30(3):192-199.
    [15] Siegel V.Distribution and population dynamics of Euphausia superba:Summary of recent findings[J].Polar Biology,2005,29:1-22.
    [16] Fotheringham A S,Brunsdon C,Charlton M.Geographically Weighted Regression:The Analysis of Spatially Varying Relationships[M].UK,Chichester:Wiley,2002:1-284.
    [17] Windle M J S,Rose G A,Devillers R,et al.Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR):An example from the Northwest Atlantic[J].ICES Journal of Marine Science,2010,42(3):285-296.
    [18] Arrigo K R,Worthen D,Schnell A,et al.Primary production in Southern Ocean waters[J].Journal of Geophysical Research Oceans,1998,103(C8):15587-15600.
    [19] Liu C,Wan R,Jiao Y,et al.Exploring non-stationary and scale-dependent relationships between walleye (Sander vitreus) distribution and habitat variables in Lake Erie[J].Marine & Freshwater Research,2017,68(2):270-281.
    [20] 朱国平,冯春雷,吴强,等.南极磷虾调查CPUE指数变动的影响因素初步分析[J].海洋渔业,2010,32(4):368-373.Zhu Guoping,Feng Chunlei,Wu Qiang,et al.Preliminary analysis on factors impacting CPUE index variations in Antarctic krill survey[J].Chinese Journal of Marine Fisheries,2010,32(4):368-373.
    [21] 张文霞,孟祥凤.南极绕极流区中尺度涡动动能年际变化和转换机制[J].极地研究,2011,23(1):42-48.Zhang Wenxia,Meng Xiangfeng.Interannual variability of the mesoscale eddy kinetic energy in the Antarctic circumpolar current region and its translation mechanism[J].Chinese Journal of Polar Research,2011,23(1):42-48.
    [22] Sievers H A,Nowlin Jr W D.Upper Ocean Characteristics in Drake Passage and Adjoining Areas of the Southern Ocean,35°W-95°W[M].//Sahrhage D.Antarctic Ocean and Resources Variability.Berlin:Springer,1988:57-80.
    [23] Catalán I A,Morales-Nin B,Company J B,et al.Environmental influences on zooplankton and micronekton distribution in the Bransfield Strait and adjacent waters[J].Polar Biology,2008,31(6):691-707.
    [24] Foody G M.Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna[J].Global Ecology & Biogeography,2004,13(4):315-320.
    [25] Shi H,Laurent E J,Lebouton J,et al.Local spatial modeling of white-tailed deer distribution[J].Ecological Modelling,2006,190(1-2):171-189.
    [26] Osborne P E,Foody G M,Suárez-Seoane S.Non-stationarity and local approaches to modelling the distributions of wildlife[J].Diversity & Distributions,2007,13(3):313-323.
    [27] Li Yan,Jiao Yan,Browder Joan A.Modeling spatially-varying ecological relationships using geographically weighted generalized linear model:A simulation study based on longline seabird bycatch[J].Fisheries Research,2016,181:14-24.