Fe-6.5%Si钢中温变形过程本构方程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Constitutive Equations for Moderate-Temperature Deformation of Fe-6. 5%Si Steel
  • 作者:梅瑞斌 ; 包立 ; 李长生 ; 刘相华
  • 英文作者:MEI Rui-bin;BAO Li;LI Chang-sheng;LIU Xiang-hua;School of Resources and Materials,Northeastern University at Qinhuangdao;State Key Laboratory of Rolling and Automation,Northeastern University;
  • 关键词:Fe-6. ; 5%Si钢 ; 应变硬化指数 ; 流动应力 ; 中温变形 ; 本构方程
  • 英文关键词:Fe-6.5% Si steel;;strain hardening index;;flow stress;;moderate-temperature deformation;;constitutive equation
  • 中文刊名:DBDX
  • 英文刊名:Journal of Northeastern University(Natural Science)
  • 机构:东北大学秦皇岛分校资源与材料学院;东北大学轧制技术及连轧自动化国家重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:东北大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.340
  • 基金:河北省自然科学基金钢铁联合基金资助项目(E2014501114,E2018501016);; 辽宁省自然科学基金资助项目(20170520314);; 中央高校基本科研业务费专项资金资助项目(N172304042)
  • 语种:中文;
  • 页:DBDX201901009
  • 页数:5
  • CN:01
  • ISSN:21-1344/T
  • 分类号:46-50
摘要
利用Gleeble 3500开展了Fe-6. 5%Si(质量分数)钢在变形温度300,400,500,600℃及应变速率为0. 05,0. 5,5 s~(-1)条件下的单道次压缩实验.在初始均匀塑性变形阶段,加工硬化作用使流动应力迅速增加,随着变形继续动态软化机制启动,流动应力增加量减弱.随着温度升高和应变速率降低,应变硬化指数减小.提出了通过变形温度、应变速率描述应变硬化指数的方法构建Fe-6. 5%Si钢中温变形过程本构方程.构建的本构方程对不同变形条件的应力预测结果和实测值吻合良好,平均相对误差约为5. 35%,预测精度较高.
        Using Gleeble 3500,the deformation behaviors of a single-pass compression for Fe-6. 5% Si steel at temperature ranging from 300 to 600 ℃ and strain rate ranging from 0. 05 to 5 s~(-1) were studied. The flow stress increases dramatically at initial uniform plastic deformation stage due to work hardening,while the increment of flow stress is to be weakened during further deformation when the dynamic softening occurs. The strain hardening index decreases with increasing the temperature and decreasing the strain rate. A new constitutive model of Fe-6. 5% Si steel at moderate-temperature deformation was proposed through describing the strain hardening index as the function of temperature and strain rate. The results predicted by this model are in good agreement with the experimental data,with an average relative error about 5. 35%.
引文
[1] Oda Y,Kohno M,Honda A. Recent development of nonoriented electrical steel sheet for automobile electrical devices[J]. Journal of Magnetism&Magnetic Materials,2008,320(20):2430-2435.
    [2]王浩,李长生,蔡般,等.球刻痕法对高磁感取向硅钢磁性的影响[J].东北大学学报(自然科学版),2013,34(11):1571-1574.(Wang Hao,Li Chang-sheng,Cai Ban,et al. Effects of the ball scribing on magnetic properties of high permeability grain-oriented silicon steels[J]. Journal of Northeastern University(Natural Science),2013,34(11):1571-1574.)
    [3] Ruiz D R,Ros-Yanez T,Vandenberghe R E,et al. Ordering phenomena in Fe-Si alloys w ith variable Si-content(0. 2-11. 7 w t%)and thermomechanical processing[J]. Revista De Metalurgia,2004,40(5):374-379.
    [4] Ros-Yanez T,Houbaert Y,Fischer O,et al. Production of high silicon steel for electrical applications by thermomechanical processing[J]. Journal of Materials Processing Technology,2003,141(1):132-137.
    [5] Ros-Yanez T,Ruiz D,Barros J,et al. Advances in the production of high-silicon electrical steel by thermomechanical processing and by immersion and diffusion annealing[J]. Journal of Alloys&Compounds,2004,369(1/2):125-130.
    [6] Liu H T,Liu Z Y,Sun Y,et al. Development ofλ-fiber recrystallization texture and magnetic property in Fe-6. 5w t%Si thin sheet produced by strip casting and w arm rolling method[J]. Materials Letters,2013,91:150-153.
    [7]林均品,叶丰,陈国良,等. 6. 5wt%Si高硅钢冷轧薄板制备工艺、结构和性能[J].前沿科学,2007,2(2):13-26.(Lin Jun-pin,Ye Feng,Chen Guo-liang,et al. Fabrication technology,microstructures and properties of Fe-6. 5w t%Si alloy sheets by cold rolling[J]. Frontier Science,2001,2(2):13-26.)
    [8] Mo Y,Zhang Z,Pan H,et al. Improved plasticity and coldrolling w orkability of Fe-6. 5w t%Si alloy by w arm-rolling w ith gradually decreasing temperature[J]. Journal of Materials Science and Technology,2016,32(5):477-484.
    [9] Li H B,Feng Y L,Yan T,et al. Constitutive model of warm deformation behavior of medium carbon steel[J]. Journal of Iron and Steel Research,International,2016,23(9):940-948.
    [10] Sellars C M,Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14:1136-1138.
    [11] Mc Queen H J,Ryan N D. Constitutive analysis in hot w orking[J]. Materials Science and Engineering:A,2002,322:43-63.
    [12] Li H,Liang Y F,Yang W,et al. Disordering induced work softening of Fe-6. 5w t%Si alloy during w arm deformation[J]. Materials Science and Engineering:A,2015,628:262-268.
    [13]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004:40-197.(Peng Da-shu. Principle of plastic deformation in metals processing[M]. Changsha:Central South University Press,2004:40-197.)
    [14]刘相华,胡贤磊,杜林秀,等.轧制参数计算模型及应用[M].北京:化学工业出版社,2007:34-40.(Liu Xiang-hua,Hu Xian-lei,Du Lin-xiu,et al. Rolling parameter calculation model and its application[M].Beijing:Chemical Industry Press,2007:34-40.)