不同胶结度断层泥强度参数与含水率关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between strength parameter and water content of fault gouge with different degrees of consolidation
  • 作者:王鹏飞 ; 谭文辉 ; 马学文 ; 李子建 ; 刘景军 ; 武洋帆
  • 英文作者:WANG Peng-fei;TAN Wen-hui;MA Xue-wen;LI Zi-jian;LIU Jing-jun;WU Yang-fan;Key Laboratory of High-Efficient Mining and Safety of Metal Mine, Ministry of Education, University of Science and Technology Beijing;School of Civil and Resources Engineering, University of Science and Technology Beijing;
  • 关键词:胶结度 ; 断层泥 ; 强度参数 ; 含水率
  • 英文关键词:consolidation degree;;fault gouge;;strength parameter;;water content
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:北京科技大学金属矿山高效开采与安全教育部重点实验室;北京科技大学土木与资源工程学院;
  • 出版日期:2018-09-29 15:31
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.302
  • 基金:国家重点研发计划项目(No.2017YFC0804103);; 国家自然科学基金项目(No.11572344)~~
  • 语种:中文;
  • 页:YTLX201905005
  • 页数:6
  • CN:05
  • ISSN:42-1199/O3
  • 分类号:37-42
摘要
断层泥的强度参数对断层的强度有重要影响,而断层泥的强度参数与其胶结度和含水率密切相关。通过对不同胶结度和含水率断层泥试样开展直剪试验,获得了断层泥的主要强度参数——黏聚力c和内摩擦角?,并对其与含水率和胶结度的关系进行了分析研究,取得了如下结论:(1)不同胶结度断层泥试样的内摩擦角均随含水率的升高而降低,但降低程度较小;(2)不同胶结度断层泥试样黏聚力随含水率升高而变化的过程可划分为3个阶段,即上升期、急剧下降期、缓慢下降期,这3个阶段由第一拐点和第二拐点分隔开;(3)随着胶结度的增大,断层泥试样的内摩擦角逐渐升高,但变化不大,且内摩擦角随含水率升高而降低的程度有逐渐减小的趋势;(4)随着胶结度的增大,断层泥试样黏聚力第一拐点位置的含水率迅速增大,而第二拐点位置含水率的变化相对较小;(5)断层泥胶结度与第一拐点含水率的关系可用二次多项式函数进行描述。
        The strength of fault is significently influenced by the strength parameters of fault gouge, which are closely related to the consolidation degree and water content. In this study, specimens of fault gouge with different consolidation degrees and water contents are subjected to the direct shear test to obtaincohesion c and internal friction angle ?, which are the dominant strength parameters of fault gouge. Based on the results of test, the relationships between the two strength parameters and consolidation degree and water content of fault gouge are analyzed and following conclusions can be drew. The internal friction angles of fault gouge specimens with different consolidation degrees decrease as the water contents increase, but the decrease of internal friction angle is slight. The trend between cohesion of fault gouge specimens of different consolidation degrees and the water content can be divided into three stages: ascent stage, steep descent stage and slow descent stage. These three stages are separated by the first inflection point and the second inflection point. As the consolidation degree increases, the internal friction angle of fault gouge increases gradually but slightly. Meanwhile, the descresing rate of the internal friction angle of fault gouge tends to descrese with the increase of the water content. As the consolidation degree increases, the water content of fault gouge whose cohesion is at the first inflection point increases rapidly, while the water content of fault gouge whose cohesion is at the second inflection point changes slightly.The relationship between consolidation degree of fault gouge and the water content of fault gouge whose cohesion is at the first inflection point can be described by a quadratic polynomial function.
引文
[1]周瑞光,成彬芳,高玉生,等.断层泥蠕变特性与含水率的关系研究[J].工程地质学报,1998,6(3):217-222.ZHOU Rui-guang,CHENG Bin-fang,GAO Yu-sheng,et al.Relationship between creep behavior of fault gouge and its water contents[J].Journal of Engineering Geology,1998,6(3):217-222.
    [2]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.HE Man-chao,XIE He-ping,PENG Su-ping,et al.Study on rock mechanics in deep mining engineering[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
    [3]何昌荣,VERBERNE B A,SPIERS C J.龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示[J].岩石力学与工程学报,2011,30(1):113-131.HE Chang-rong,VERBERNE B A,SPIERS C J.Frictional properties of sedimentary rocks and natural fault gouge from Longmenshan fault zone and their implications[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(1):113-131.
    [4]黄志全,吴超,毕理毅,等.断层泥动剪切模量和阻尼比影响因素试验研究[J].工程地质学报,2017,25(1):50-57.HUANG Zhi-quan,WU Chao,BI Li-yi,et al.Experimental study in influencing factors of dynamic shear module and damping ratio of fault gouge[J].Journal of Engineering Geology,2017,25(1):50-57.
    [5]张庆松,李鹏,张霄,等.隧道断层泥注浆加固机制模型试验研究[J].岩石力学与工程学报,2015,34(5):924-934.ZAHNG Qing-song,LI Peng,ZHANG Xiao,et al.Model test of grouting strengthening mechanism for fault gouge of tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(5):924-934.
    [6]RING UWE,UYSAL I.TONGUC,GLODNY JOHANNES,et al.Fault-gouge dating in the Southern Alps,New Zealand[J].Tectonophysics,2017,717:321-338.
    [7]MAIR K,ABE S.Breaking up:comminution mechanisms in sheared simulated fault gouge[J].Pure and Applied Geophysics,2011,168(12):2277-2288.
    [8]JANSSEN CHRISTOPH,WIRTH RICHARD,LINAIMING,et al.TEM microstructural analysis in a fault gouge sample of the Nojima Fault Zone,Japan[J].Tectonophysics,2013,583:101-104.
    [9]MORROW C A,MOORE D E,LOCKNER D A.Effect of mineral bond strength and adsorbed water on fault gouge frictional strength[J].Geophysical Research Letters,2000,27(6):815-818.
    [10]DOROSTKAR OMID,GUYER ROBERT A,JOHNSONPAUL A,et al.On the micromechanics of slip events in sheared fluid-saturated fault gouge[J].Geophysical Research Letters,2017,44(12):6106-6108.
    [11]易顺民,唐辉明.断层泥粒度成分的分形研究[J].地震地质,1995,17(2):185-190.YI Shun-min,TANG Hui-ming.The fractal study of grain size composition of fault gouge[J].Seismology and Geology,1995,17(2):185-190.
    [12]刘彬,聂德新.断层泥强度参数与含水率关系研究[J].岩土工程学报,2006,28(12):2164-2167.LIU Bin,NIE De-xin.Study on relation between strength parameter and water content of gouge[J].Chinese Journal of Geotechnical Engineering,2006,28(12):2164-2167.
    [13]李碧雄,邓建辉.龙门山断裂带深溪沟段断层泥物质的物理力学性质试验研究[J].岩石力学与工程学报,2011,30(1):2653-2660.LI Bi-xiong,DENG Jian-hui.Experimental study of physico-mechanical properties of fault materials from Shenxigou rupture of Lomenshan fault[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(1):2653-2660.
    [14]ISMAIL M A,JOERH A,SIM W H,et al.Effect of cement type on shear behavior of cemented calcareous soil[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(6):520-529.
    [15]朱长歧,周斌,刘海峰,等.天然胶结钙质土强度及微观结构研究[J].岩土力学,2014,35(6):1655-1663.ZHU Chang-qi,ZHOU Bin,LIU Hai-feng,et al.Investigation on strength and microstructure of naturally cemented calcareous soil[J].Rock and Soil Mechanics,2014,35(6):1655-1663.
    [16]蒋明镜,沈珠江.结构性黏土试样人工制备方法研究[J].水利学报,1997,(6):56-61.JIANG Ming-jing,SHEN Zhu-jiang.A method of artificial preparation of structured clay samples[J].Journal of Hydraulic Engineering,1997,(6):56-61.
    [17]吕古贤,郭涛,舒斌,等.胶东金矿集中区构造体系多层次控矿规律研究[J].大地构造与成矿学,2007,31(2):193-204.LüGu-xian,GUO Tao,SHU Bin,et al.Study on the multi-level controlling rule for tectonic system in Jiaodong gold-centralized area[J].Geotectonica et Metallogenia,2007,31(2):193-204.