苝二酰亚胺:有机膦盐基双组份共混电子传输层及其开路电压接近1.0 V的非富勒烯聚合物太阳电池(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Perylenediimide: Phosphonium-Based Binary Blended Small-Molecule Cathode Interlayer for Efficient Fullerene-Free Polymer Solar Cells with Open Circuit Voltage to 1.0 V
  • 作者:GUPTA ; Monika ; 闫东 ; 沈福刚 ; 徐建中 ; 詹传郎
  • 英文作者:GUPTA Monika;YAN Dong;SHEN Fugang;XU Jianzhong;ZHAN Chuanlang;Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Chemistry and Environmental Science, Hebei University;
  • 关键词:界面工程 ; 电子传输层 ; 非富勒烯 ; 聚合物太阳电池 ; 小分子
  • 英文关键词:Interfacial engineering;;Cathode buffer layer;;Fullerene-free;;Polymer solar cell;;Small molecule
  • 中文刊名:WLHX
  • 英文刊名:Acta Physico-Chimica Sinica
  • 机构:北京分子科学中心中国科学院光化学重点实验室中国科学院化学研究所;中国科学院大学;河北大学化学与环境科学学院;
  • 出版日期:2019-05-15
  • 出版单位:物理化学学报
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Natural Science Foundation of China(91433202,21773262,21521062,21276059,91227112);; the Chinese Academy of Sciences(XDB12010200)~~
  • 语种:英文;
  • 页:WLHX201905009
  • 页数:7
  • CN:05
  • ISSN:11-1892/O6
  • 分类号:51-57
摘要
有机太阳电池的电子传输层(cathode interlayer,CIF)要求具备多种性质以利于实现高性能的电子传输与收集,这些性质包括可以与活性层形成优异的欧姆接触、高电子传输能力、低密度缺陷、高空穴阻挡能力等,而使用合适的双组份共混电子传输层可能更好地实现这些功能。本文中,我们选取苝二酰亚胺和四苯基溴化膦(PDINO:TPhPBr)来制备双组份共混的小分子CIF,并选取PBDB-T:IDTBR制备活性层。受体IDTBR的高分子空轨道(LIMO)能级、给体PBDB-T的低最高占据轨道(HOMO)能级以及小的给受体间的HOMO-HOMO能级差有利于得到高的开路电压(Voc),更主要的是,与单组份CIF相比,PDINO:TPhPBr所具有的更优异的性能使得所制备的非富勒烯聚合物太阳能电池具有更高的Voc、短路电流(Jsc)和填充因子(FF)。最终,得到了8.27%的光电转换效率和1.0 V的Voc。这些结果说明了苝二酰亚胺和膦盐基双组份共混小分子CIF在提升电池性能方面所具备的巨大潜能。
        The fabrication of high-efficiency organic solar cells requires a cathode interlayer(CIF) having multiple properties such as forming an ohmic contact with the active layer, high electron conductivity,low-density traps, and hole blocking. These roles can be more completely fulfilled by using a suitable binary blended CIF rather than a single molecule based CIF. In this article, we present the roles by using binary blended PDINO(amino N-oxide perylene diimide) and QPhPBr(tetraphenylphosphonium bromide) as the CIF to fabricate fullerene-free polymer solar cells(PSCs) with PBDB-T:IDTBR, a new donor: acceptor combination, as the active layer. The high-lying lowest unoccupied molecular orbital of the acceptor and the low-lying highest occupied molecular orbital(HOMO) of the polymer with small driving force(the donor-acceptor HOMO-HOMO energy offset, ?HOMO) for the hole transfer, both result in a high open circuit voltage(Voc). Moreover, our strategy to insert a dual mixed solution of CIF over the blended active layer better facilitates the role,which significantly improves charge extraction and collection, leading to the high Voc, short-circuit current density(Jsc), and fill factor(FF) observed in comparison to a single CIF material. It was observed that the power conversion efficiency(PCE)increases to 8.27%, with a high Voc of 1.0 V, using a binary mixture of CBL. Such tremendous improvements in Voc using well known polymer donors have not been reported till date in binary solar cell systems. This idea demonstrates that the minimum energy loss because of the small ?HOMO of the D-A combination and the use of a dual mixed layer of CBL together present the future prospects of non-fullerene photovoltaic devices for researchers.
引文
(1)Brabec,C.J.;Sariciftci,N.S.;Hummelen,J.C.Adv.Funct.Mater.2001,11,15.doi:10.1002/1616-3028(200102)11:1<15::aid-adfm15>3.3.co;2-1
    (2)Guenes,S.;Neugebauer,H.;Sariciftci,N.S.Chem.Rev.2007,107,1324.doi:10.1021/cr050149z
    (3)Green,M.A.;Emery,K.;Hishikawa,Y.;Warta,W.;Dunlop,E.D.Prog.Photovol.2012,20,606.doi:10.1002/pip.2267
    (4)Zhan,C.;Yao,J.Chem.Mater.2016,28,1948.doi:10.1021/acs.chemmater.5b04339.
    (5)Cheng,Y.J.;Yang,S.H.;Hsu,C.S.Chem.Rev.2009,109,5868.doi:10.1021/cr900182s
    (6)Lin,Y.;Li,Y.;Zhan,X.Chem.Soc.Rev.2012,41,4245.doi:10.1039/c2cs15313k
    (7)Li,G.;Zhu,R.;Yang,Y.Nat.Photon.2012,6,153.doi:10.1038/nphoton.2012.11
    (8)Zhuk,S.;Kushwaha,A.;Wong,T.K.S.;Masudy-Panah,S.;Smirnov,A.;Dalapati,G.K.Sol.Energy Mater.Sol.Cells 2017,171,239.doi:10.1016/j.solmat.2017.05.064
    (9)Salim,T.;Sun,S.;Abe,Y.;Krishna,A.;Grimsdale,A.C.;Lam,Y.M.J.Mater.Chem.A 2015,3,8943.doi:10.1039/c4ta05226a
    (10)Gedefaw,D.;Prosa,M.;Bolognesi,M.;Seri,M.;Andersson,M.R.Adv.Energy Mater.2017,7,1700575.doi:10.1002/aenm.201700575
    (11)Chochos,C.L.;Leclerc,N.;Gasparini,N.;Zimmerman,N.;Tatsi,E.;Katsouras,A.;Moschovas,D.;Serpetzoglou,E.;Konidakis,I.;Fall,S.;et al.J.Mater.Chem.A 2017,5,25064.doi:10.1039/c7ta09224e
    (12)Jiang,B.;Yao,J.;Zhan,C.ACS Appl.Mater.Interfaces 2016,8,26058.doi:10.1021/acsami.6b08407
    (13)Yin,Z.;Wei,J.;Zheng,Q.Adv.Sci.2016,3,1500362.doi:10.1002/advs.201500362
    (14)Jorgensen,M.;Norrman,K.;Gevorgyan,S.A.;Tromholt,T.;Andreasen,B.;Krebs,F.C.Adv.Mater.2012,24,580.doi:10.1002/adma.201104187
    (15)Grossiord,N.;Kroon,J.M.;Andriessen,R.;Blom,P.W.M.Org.Elect.2012,13,432.doi:10.1016/j.orgel.2011.11.027
    (16)Cheng,P.;Li,G.;Zhan,X.;Yang,Y.Nat.Photon.2018,12,131.doi:10.1038/s41566-018-0104-9
    (17)Hou,J.;Inganas,O.;Friend,R.H.;Gao,F.Nat.Mater.2018,17,119.doi:10.1038/nmat5063
    (18)Bin,H.;Gao,L.;Zhang,Z.G.;Yang,Y.;Zhang,Y.;Zhang,C.;Chen,S.;Xue,L.;Yang,C.;Xiao,M.;Li,Y.Nat.Commun.2016,7,13651.doi:10.1038/ncomms13651
    (19)Li,Z.;Jiang,K.;Yang,G.;Lai,J.Y.L.;Ma,T.;Zhao,J.;Ma,W.;Yan,H.Nat.Commun.2016,7,13094.doi:10.1038/ncomms13094
    (20)Dai,S.;Zhao,F.;Zhang,Q.;Lau,T.K.;Li,T.;Liu,K.;Ling,Q.;Wang,C.;Lu,X.;You,W.;et al.J.Am.Chem.Soc.2017,139,1336.doi:10.1021/jacs.6b12755
    (21)Veldman,D.;Meskers,S.C.J.;Janssen,R.A.J.Adv.Funct.Mater.2009,19,1939.doi:10.1002/adfm.200900090
    (22)Min,J.;Luponosov,Y.N.;Zhang,Z.G.;Ponomarenko,S.A.;Ameri,T.;Li,Y.;Brabec,C.J.Adv.Energy Mater.2014,4,1400816.doi:10.1002/aenm.201400816
    (23)Walker,B.;Choi,H.;Kim,J.Y.Curr.Appl.Phys.2017,17,370.doi:10.1016/j.cap.2016.12.007
    (24)Singh,A.;Dey,A.;Das,D.;Iyer,P.K.ACS Appl.Mater.Interfaces 2016,8,10904.doi:10.1021/acsami.6b03102.
    (25)El Jouad,Z.;Barkat,L.;Stephant,N.;Cattin,L.;Hamzaoui,N.;Khelil,A.;Ghamnia,M.;Addou,M.;Morsli,M.;Bechu,S.;et al.J.Phys.Chem.Solids 2016,98,128.doi:10.1016/j.jpcs.2016.06.014
    (26)Li,W.;Yan D.;Liu,W.;Chen,J.;Xu,W.;Zhan,C.;Yao,J.Solar RRL 2017,1,1700014.doi:10.1002/SORL.201700014
    (27)Zhao,W.;Qian,D.;Zhang,S.;Li,S.;Inganas,O.;Gao,F.;Hou,J.Adv.Mater.2016,28,4734.doi:10.1002/adma.201600281
    (28)Li,S.;Ye,L.;Zhao,W.;Zhang,S.;Mukherjee,S.;Ade,H.;Hou,J.Adv.Mater.2016,28,9423.doi:10.1002/adma.201602776
    (29)Zhao,W.;Zhang,S.;Hou,J.Sci.China-Chem.2016,59,1574.doi:10.1007/s11426-016-0198-0
    (30)Kan,B.;Feng,H.;Wan,X.;Liu,F.;Ke,X.;Wang,Y.;Wang,Y.;Zhang,H.;Li,C.;Hou,J.;et al.J.Am.Chem.Soc.2017,139,4929.doi:10.1021/jacs.7b01170
    (31)Yao,H.;Ye,L.;Hou,J.;Jang,B.;Han,G.;Cui,Y.;Su,G.M.;Wang,C.;Gao,B.;Yu,R.;et al.Adv.Mater.2017,29,1700254.doi:10.1002/adma.201700254
    (32)Zhang,Z.G.;Qi,B.;Jin,Z.;Chi,D.;Qi,Z.;Li,Y.;Wang,J.Energy Environ.Sci.2014,7,1966.doi:10.1039/c4ee00022f
    (33)Joly,D.;Bouit,P.A.;Hissler,M.J.Mater.Chem.C 2016,4,3686.doi:10.1039/c6tc00590j
    (34)Gupta,M.;Yan,D.;Xu,J.;Yao,J.;Zhan,C.ACS Appl.Mater.Interfaces 2018,10,5569.doi:10.1021/acsami.7b17870.
    (35)Liu,W.L.,Yao,J.N.;Zhan,C.L.Chin.Chem.Lett.2018,28(3),381.doi:10.1016/j.cclet.2017.11.018
    (36)Baran,D.;Ashraf,R.S.;Hanifi,D.A.;Abdelsamie,M.;Gasparini,N.;Rohr,J.A.;Holliday,S.;Wadsworth,A.;Lockett,S.;Neophytou,M.;et al.Nat.Mater.2017,16,363.doi:10.1038/nmat4797
    (37)Blom,P.W.M.;Mihailetchi,V.D.;Koster,L.J.A.;Markov,D.E.Adv.Mater.2007,19,1551.doi:10.1002/adma.200601093
    (38)Proctor,C.M.;Kuik,M.;Thuc-Quyen,N.Prog.Polym.Sci.2013,38,1941.doi:10.1016/j.progpolymsci.2013.08.008
    (39)Tang,A.;Zhan,C.;Yao,J.Adv.Energy Mater.2015,5,1500059.doi:10.1002/aenm.201500059
    (40)Chen,Y.;Zhang,X.;Zhan,C.;Yao,J.ACS Appl.Mater.Interfaces2015,7,6462.doi:10.1021/am507581w