具有离子响应性的聚(1-乙烯基-3-乙基咪唑四氟硼酸盐)@CaO微胶囊的表征及触发释放
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteration and triggered release of ion-responsive poly(1-vinyl-3-ethylimidazolium tetrafluoroborate)@CaO microcapsules
  • 作者:梁鼒 ; 王倩 ; 董必钦 ; 邢锋
  • 英文作者:LIANG Zi;WANG Qian;DONG Biqin;XING Feng;Guangdong Province Key Laboratory of Durability for Marine Civil Engineering,Department of Civil Engineering,Shenzhen University;State Key Laboratory of Polymer Physics and Chemistry,Institute of Chemistry,Chinese Academy of Sciences;
  • 关键词:微胶囊 ; 聚离子液体 ; 离子交换 ; 触发释放 ; 抗腐蚀
  • 英文关键词:microcapsule;;poly(ionic liquid);;ion-exchange;;triggered release;;corrosion resistance
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:深圳大学土木工程学院广东省滨海土木工程耐久性重点实验室;中国科学院化学研究所高分子物理与化学国家重点试验室;
  • 出版日期:2018-10-15 22:02
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(U1301241;51233007)
  • 语种:中文;
  • 页:FUHE201907023
  • 页数:8
  • CN:07
  • ISSN:11-1801/TB
  • 分类号:193-200
摘要
采用相分离法合成了具有离子响应性的聚(1-乙烯基-3-乙基咪唑四氟硼酸盐)(PVEIm+BF4-)@CaO微胶囊。聚离子液体(PILs)的BF4-与水溶液中的Cl~-发生离子交换使疏水性的交联PILs壳转变为亲水性,在水中形成亲水通道。PVEIm~+BF_4~-@CaO微胶囊内部的CaO从通道被释放到水中形成Ca(OH)2。PVEIm+BF4-@CaO微胶囊加入后,NaCl水溶液中Cl~-的浓度由8.3mmol·L-1降低至5.8mmol·L-1,pH值由7.00增加至11.83。提高反应物中的离子液体(ILs)的加入量、苯乙烯(St)∶二乙烯基苯(DVB)的质量比或水溶液中Cl~-的浓度均可提高PVEIm~+BF_4~-@CaO微胶囊中CaO的释放速率。不同含量单体组成的微胶囊或被不同浓度Cl~-触发的微胶囊内的CaO均可被全部释放至NaCl溶液中。溶液中的最大Ca2+浓度基本一致,约为3.4mmol·L-1。SO_4~(2-)也可触发微胶囊的释放。结果表明,PVEIm+BF4-@CaO微胶囊对Cl~-和SO_4~(2-)具有良好的响应性。加入PVEIm+BF4-@CaO微胶囊后,NaCl水溶液中Cl~-/OH-的浓度比显著降低,有利于提高钢筋的抗Cl~-腐蚀能力。
        The ion-responsive poly(1-vinyl-3-ethylimidazolium tetrafluoroborate)(PVEIm~+BF_4~-)@CaO microcapsule was synthesized by phase separation.By the ion-exchange of BF4-on the poly(ionic liquids)(PILs)with Cl~-in water,the hydrophobic crosslinked PILs shell can be converted to hydrophilic and formed hydrophilic channels in water.The CaO in microcapsules can be released to water through the channels and transferred to Ca(OH)_2.The addition of PVEIm~+BF_4~-@CaO microcapsule to NaCl solution can reduce the Cl~-concentration from 8.3 mmol·L-1 to 5.8 mmol·L-1 and increase the pH from 7.00 to 11.83 simultaneously.The release rate of CaO shows a direct relationship with ionic liquids(ILs)content and the mass ratio of styrene(St)∶divinylbenzene(DVB).The increase of Cl~-concentration can result in the increase of CaO release rate.The CaO can be completely released to NaCl solution from PVEIm+BF4-@CaO microcapsules consisted with different mass ratios of monomers or triggered by various concentrations of Cl~-.The maximum Ca~(2+)concentrations in the solution are similar,which is about3.4 mmol·L-1.SO_4~(2-)can also trigger the release of microcapsule.The results show that the PVEIm~+BF_4~-@CaO microcapsules are sensitive to Cl~-and SO_4~(2-).The concentration ratio of Cl~-/OH-decreases significantly after the PVEIm~+BF_4~-@CaO microcapsules adding,which is beneficial to improve the corrosion resistance of steel bars to Cl~-.
引文
[1]LIU Y P.Modeling the time-to-corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures[D].Blacksburg:Virginia Polytechnic Institute and State University,1996.
    [2]李永强,巴明芳,柳俊哲,等.干湿循环作用下水泥基复合材料抗氯离子侵蚀性能及其微观结构变化[J].复合材料学报,2017,34(12):2856-2865.LI Y Q,BA M F,LIU J Z,et al.Resistance to chloride erosion of cement matrix composite materials under dry-wet cycling and their micro-structural changes[J].Acta Materiae Compositae Sinica,2017,34(12):2856-2865(in Chinese).
    [3]殷梦缇,尹世平,王波.氯盐环境下纤维编织网增强混凝土拉伸性能[J].复合材料学报,2018,35(2):433-440.YIN M T,YIN S P,WANG B.Tensile property of textile reinforced concrete under chloride salt environment[J].Acta Materiae Compositae Sinica,2018,35(2):433-440(in Chinese).
    [4]LIU R,JIANG L H,HUANG G H,et al.The effect of carbonate and sulfate ions on chloride threshold level of reinforcement corrosion in mortar with/without fly ash[J].Construction and Building Materials,2016,113:90-95.
    [5]丁一宁,王卿,林宇栋.纤维对开裂后混凝土渗透性及裂缝恢复的影响[J].复合材料学报,2017,34(8):1853-1861.DING Y N,WANG Q,LIN Y D.Effect of fibers on permeability and crack relaxation of cracked concrete[J].Acta Materiae Compositae Sinica,2017,34(8):1853-1861(in Chinese).
    [6]BROOMFIELD J P,DAVIES K,HLADKY K.The use of permanent corrosion monitoring in new and existing reinforced concrete structures[J].Cement and Concrete Composites,2002,24(1):27-34.
    [7]THANGAVEL K,RENGASWAMY N S.Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete[J].Cement and Concrete Composites,1998,20(4):283-292.
    [8]MUNDRA S,CRIADO M,BERNAL S A,et al.Chlorideinduced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes[J].Cement and Concrete Research,2017,100:385-397.
    [9]ORMELLESE M,BERRA M,BOLZONI F,et al.Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures[J].Cement and Concrete Research,2006,36(3):536-547.
    [10]CRIADO M,MONTICELLI C,FAJARDO S,et al.Organic corrosion inhibitor mixtures for reinforcing steel embedded in carbonated alkali-activated fly ash mortar[J].Construction and Building Materials,2012,35:30-37.
    [11]CAO Y H,DONG S G,ZHENG D J,et al.Multifunctional inhibition based on layered double hydroxides to comprehensively control corrosion of carbon steel in concrete[J].Corrosion Science,2017,126:166-179.
    [12]LIU B X,WANG Y,YANG F,et al.Development of a chlorantraniliprole microcapsule formulation with a high loading content and controlled-release property[J].Journal of Agricultural and Food Chemistry,2018,66(26):6561-6568.
    [13]RAVANFAR R,COMUNIAN T A,ABBASPOURRAD A.Thermoresponsive,water-dispersible microcapsules with a lipid-polysaccharide shell to protect heat-sensitive colorants[J].Food Hydrocolloids,2018,81:419-428.
    [14]WANG J Y,SOENS H,VERSTRAETE W,et al.Selfhealing concrete by use of microencapsulated bacterial spores[J].Cement and Concrete Research,2014,56:139-152.
    [15]GUN W J,ROUTH A F.Microcapsule flow behaviour in porous media[J].Chemical Engineering Science,2013,102:309-314.
    [16]PARK J,LEE S S,SOHN Y H,et al.Hydrate formation in water-laden microcapsules for temperature-sensitive release of encapsulants[J].RSC Advances,2016,6(88):85012-85018.
    [17]MATSUDA T,JADHAV N,KASHI K B,et al.Self-healing ability and particle size effect of encapsulated cerium nitrate into pH sensitive microcapsules[J].Progress in Organic Coatings,2016,90:425-430.
    [18]WHITE S R,SOTTOS N R,GEUBELLE P H,et al.Autonomic healing of polymer composites[J].Nature,2001,409(6822):794-797.
    [19]BUJES-GARRIDO J,ARCOS-MARTINEZ M J.Disposable sensor for electrochemical determination of chloride ions[J].Talanta,2016,155:153-157.
    [20]JI X Y,ZHANG Q,LIANG F X,et al.Ionic liquid functionalized Janus nanosheets[J].Chemical Communications,2014,50(43):5706-5709.
    [21]UEKI T,WATANABE M.Macromolecules in ionic liquids:Progress,challenges,and opportunities[J].Macromolecules,2008,41(11):3739-3749.
    [22]王勇,张昊,张军,等.纳米TiO2/再生纤维素复合薄膜的制备及光催化性能[J].复合材料学报,2007,24(3):35-39.WANG Y,ZHANG H,ZHANG J,et al.Preparation and photocatalytic activity of nano-TiO2/regenerated cellulose composite films[J].Acta Materiae Compositae Sinica,2007,24(3):35-39(in Chinese).
    [23]ZHANG Z L,ZHANG Z G,HAO B N,et al.Fabrication of imidazolium-based poly(ionic liquid)microspheres and their electrorheological responses[J].Journal of Materials Science,2017,52(10):5778-5787.
    [24]MECERREYES D.Polymeric ionic liquids:Broadening the properties and applications of polyelectrolytes[J].Progress in Polymer Science,2011,36(12):1629-1648.
    [25]MARCILLA R,BLAZQUEZ J A,RODRIGUEZ J,et al.Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions[J].Journal of Polymer Science Part A:Polymer Chemistry,2004,42(1):208-212.
    [26]THEMELIS D G,TZANAVARAS P D,ANTHEMIDIS AN,et al.Direct,selective flow injection spectrophotometric determination of calcium in wines using methylthymol blue and an on-line cascade dilution system[J].Analytica Chimica Acta,1999,402(1-2):259-266.