火箭上升段滚动时域制导控制一体化设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Receding Horizon Integrated Guidance and Control Design for Rockets in Ascent Phase
  • 作者:李敏 ; 李惠 ; 聂文明
  • 英文作者:LI Min;LI Hui-feng;NIE Wen-ming;School of Astronautics,Beihang University;
  • 关键词:制导控制一体化(IGC) ; 反馈线性化 ; 凸优化理论 ; 滚动时域控制(RHC)
  • 英文关键词:Integrated guidance and control(IGC);;Feedback linearization;;Convex optimization theory;;Receding horizon control(RHC)
  • 中文刊名:YHXB
  • 英文刊名:Journal of Astronautics
  • 机构:北京航空航天大学宇航学院;
  • 出版日期:2019-01-30
  • 出版单位:宇航学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(2016YFB1200100)
  • 语种:中文;
  • 页:YHXB201901005
  • 页数:10
  • CN:01
  • ISSN:11-2053/V
  • 分类号:45-54
摘要
针对传统火箭上升段制导与姿态控制系统分离设计无法最大程度优化控制精度、控制量需求等系统整体控制性能的问题,提出一种基于凸优化的滚动时域制导控制一体化(IGC)设计方法。首先建立反映质心运动和绕质心运动耦合关系的IGC模型并对其进行反馈线性化获得面向控制的线性模型。然后考虑控制约束,将上升段IGC问题建模为最优控制问题,基于凸优化理论设计滚动时域控制器。该方法基于滚动时域控制(RHC)策略中反馈校正和滚动优化的思想,可以及时弥补模型误差和外部干扰等造成的不确定性;同时利用凸优化算法计算复杂度低、求解简单的优势,有效解决了含控制约束的复杂优化问题的求解。基于李雅普诺夫稳定性理论证明了闭环系统的稳定性。数值仿真校验了该滚动时域控制方法的有效性和鲁棒性;并且仿真结果表明,火箭上升段IGC设计比传统分离设计制导精度更高、控制量需求更小且姿态变化更加平缓。
        A method of receding horizon integrated guidance and control( IGC) based on the convex optimization for rockets in the ascent phase is proposed for that the traditional separation design of the guidance and attitude control systems cannot achieve the optimal performance of the overall system. Firstly,the IGC model reflecting the coupling between the guidance and control loops is established and linearized by the feedback linearization. Then,the ascent IGC problem is modeled as an optimal control problem. A receding horizon controller based on the convex optimization theory is designed.The method can make up for the uncertainty caused by the model error and external interference timely based on the idea of feedback correction and receding horizon optimization of the receding horizon control( RHC) strategy. Meanwhile,the complex optimization problem with the control constraints can be solved effectively based on the advantages of low computational complexity and simple solution of convex optimization algorithm. The closed-loop stability of the IGC system is proved based on the Lyapunov stability theory. The numerical simulation verifies the effectiveness and robustness of the proposed method. And the simulation results show that the IGC design has higher guidance precision,smaller control requirements and smoother attitude angle change than the traditional separation design.
引文
[1]薛文超,黄朝东,黄一.飞行制导控制一体化设计方法综述[J].控制理论与应用,2013,30(12):1511-1520.[Xue Wen-chao,Huang Chao-dong,Huang Yi. Design methods for the integrated guidance and control system[J]. Control Theory and Applications,2013,30(12):1511-1520.]
    [2] Lu P, Pan B F. Highly constrained optimal launch ascent guidance[J]. Journal of Guidance,Control,and Dynamics,2010,33(2):404-414.
    [3] Choi H D,Bang H. An adaptive control approach to the attitude control of a flexible rocket[J]. Control Engineering Practice,2000,8(9):1003-1010.
    [4]程继红.飞行器控制导引一体化设计方法研究[J].海军航空工程学院学报,2006,21(2):227-230.[Cheng Ji-hong.Research on integrated guidance and control design method[J].Journal of Naval Aeronautical Engineering Institute,2006,21(2):227-230.]
    [5]聂文明,李惠峰.固体导弹助推段自抗扰制导控制一体化设计方法[J].宇航学报,2017,38(11):1177-1185.[Nie Wen-ming,Li Hui-feng. An active disturbance rejection design method for ascent integrated guidance and control of solid missiles[J]. Journal of Astronautics,2017,38(11):1177-1185.]
    [6] Williams D E,Richman J,Friedland B. Design of an integrated strapdown guidance and control system for a tactical missile[C].Guidance and Control Conference,Gatlinbug,USA,August 15-17,1983.
    [7]舒燕军,唐硕.轨控式复合控制导弹制导与控制一体化反步设计[J].宇航学报,2013,34(1):79-85.[Shu Yan-jun,Tang Shuo. Integrated guidance and control backstepping design for blended control missile based on NDO[J]. Journal of Astronautics,2013,34(1):79-85.]
    [8]董飞垚,雷虎民,李炯,等.拦截弹自适应最优滑模制导和控制一体化设计[J].宇航学报,2013,34(11):1456-1461.[Dong Fei-yao, Lei Hu-min, Li Jiong, et al. Design of integrated adaptive optimal sliding-mode guidance and control for interceptor[J]. Journal of Astronautics,2013,34(11):1456-1461.]
    [9] Menon P K,Ohlmeyer E J. Nonlinear integrated guidance-control laws for homing missiles[C]. AIAA Guidance,Navigation,and Control Conference,Montreal,Canada,August 6-9,2001.
    [10]赖超,王卫红,熊少锋.拦截大机动目标的三维制导控制一体化设计[J].宇航学报,2017,38(7):714-722.[Lai Chao,Wang Wei-Hong, Xiong Shao-Feng. Integrated guidance and control design against highly maneuvering target[J]. Journal of Astronautics,2017,38(7):714-722.]
    [11] Wang J H,Liu L H,Zhao T,et al. Integrated guidance and control for hypersonic vehicles in dive phase with multiple constraints[J]. Aerospace Science and Technology,2016,53:103-115.
    [12] Hughes T L,Mc Farland M B. Integrated missile guidance law and autopilot design using linear optimal control[C]. AIAA Guidance, Navigation, and Control Conference, Denver CO,Oregon,August 14-17,2000.
    [13] Vaddi S,Menon P K,Ohlmeyer E J. Numerical state-dependent Riccati equation approach for missile integrated guidance control[J]. Journal of Guidance,Control,and Dynamics,2009,32(2):699-703.
    [14] Xin M,Balakrishnan S N,Ohlmeyer E J. Integrated guidance and control of missiles withθ-D method[J]. IEEE Transactions on Control Systems Technology,2006,14(6):981-992.
    [15] Qin S,Badgwell T. An overview of industrial model predictive control technology[J]. Control Engineering Practice,1997,93(7):232-256.
    [16] Qin S J,Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice,2003,11(7):733-764.
    [17]彭海军,谭述君,吴志刚.航天器Halo轨道间转移的滚动时域控制[J].宇航学报,2012,33(8):1027-1034.[Peng Hai-jun,Tan Shu-jun,Wu Zhi-gang. Receding horizon control of the spacecraft for transferring between Halo orbits[J]. Journal of Astronautics,2012,33(8):1027-1034.]
    [18] Boyd S,Vandenberghe L. Convex optimization[M]. New York:Cambridge University Press,2004.
    [19] Chen H,Allgower F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability[J]. Automatica,1997,34(10):1205-1277.
    [20]陈虹.模型预测控制[M].北京:科学出版社,2003.
    [21] Khalil H K. Nonlinear systems[M]. New York:Macmillan Publishing Company,1992.