支持向量机回归在臭氧预报中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Support Vector Machine Regression in Ozone Forecasting
  • 作者:苏筱倩 ; 安俊琳 ; 张玉欣 ; 梁静舒 ; 刘静达 ; 王鑫
  • 英文作者:SU Xiao-qian;AN Jun-lin;ZHANG Yu-xin;LIANG Jing-shu;LIU Jing-da;WANG Xin;Key Laboratory of Meteorological Disaster,Ministry of Education,Joint International Research Laboratory of Climate and Environment Change,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology;Weather Modification Office of Qinghai Province;Meteorological Observation Centre of China Meteorological Administration;
  • 关键词:支持向量机回归 ; 臭氧预报 ; 臭氧小时值 ; 臭氧日最大值 ; 臭氧日最大8 ; h滑动平均
  • 英文关键词:support vector machine regression(SVMr);;O_3 prediction;;hourly O_3 concentrations;;daily maximum O_3 concentrations;;maximum 8 h moving average O_3 concentrations
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:南京信息工程大学气象灾害教育部重点实验室气候与环境变化国际合作联合实验室气象灾害预报预警与评估协同创新中心;青海省人工影响天气办公室;中国气象局气象探测中心;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(91544229);; 国家重点研发计划项目(2016YFC0202400);; 江苏省高校“青蓝工程”项目
  • 语种:中文;
  • 页:HJKZ201904020
  • 页数:8
  • CN:04
  • ISSN:11-1895/X
  • 分类号:179-186
摘要
采用南京工业区2016年5月20日~8月15日这一高臭氧(O_3)期的O_3、O_3前体物和常规气象资料数据,利用支持向量机回归(SVMr)方法分别预报O_3的小时值、日最大值和最大8 h滑动平均值.结果表明,O_3小时值预报的相关系数(R~2)为0. 84,平均绝对误差(MAE)和平均绝对百分误差(MAPE)分别为3. 44×10-9和24. 48,O_3前期浓度、紫外B波段辐射(UVB)和NO_2浓度是关键因子. O_3日最大值预报的主要因子是NO_x在07:00的浓度和UVB.预报O_38 h时UVB和气温起重要作用.加入前体物项能够使O_3的预报精度提升10%~28%.与多元线性回归方法相比,SVMr对O_3浓度的预报有明显优势.
        Support vector machine regression( SVMr) was proposed to forecast hourly ozone( O_3) concentrations,daily maximum O_3 concentrations,and maximum 8 h moving average O_3 concentrations( O_38 h) by employing the observations of meteorological variables and O_3 and its precursors during the high O_3 periods from May 20 to August 15,2016 at an industrial area in Nanjing. The squared correlation coefficient( R~2) of the hourly O_3 concentrations forecast was 0. 84. The mean absolute error( MAE) and mean absolute percentage error( MAPE) were 3. 44 × 10-9 and 24. 48,respectively. The key factors for the hourly O_3 forecast were the O_3 preconcentrations,amount of ultraviolet radiation B( UVB),and the NO_2 concentration. The main factors for the O_3 daily maximum forecast were the NO_xconcentrations at 07: 00 and the UVB level. Temperature and UVB played an important role in predicting O_38 h.In general,taking precursors into account could increase the accuracy of O_3 prediction by 10%-28%. For O_3 concentration forecasting,SVMr gave significantly better predictions than multiple linear regression methods.
引文
[1] Karlsson P E,Klingberg J,Engardt M,et al. Past,present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe[J]. Science of the Total Environment,2017,576:22-35.
    [2] Wang T,Xue L K,Brimblecombe P,et al. Ozone pollution in China:a review of concentrations, meteorological influences,chemical precursors, and effects[J]. Science of the Total Environment,2016,575:1582-1596.
    [3] Yang C X,Yang H B,Guo S,et al. Alternative ozone metrics and daily mortality in Suzhou:the China air pollution and health effects study(CAPES)[J]. Science of the Total Environment,2012,426:83-89.
    [4] Zhai L, Li S, Zou B, et al. An improved geographically weighted regression model for PM2. 5concentration estimation in large areas[J]. Atmospheric Environment,2018,181:145-154.
    [5]安俊琳,王跃思,朱彬.主成分和回归分析方法在大气臭氧预报的应用——以北京夏季为例[J].环境科学学报,2010,30(6):1286-1294.An J L,Wang Y S,Zhu B. Principal component and multiple regression analysis predicting ozone concentrations:case study in summer in Beijing[J]. Acta Scientiae Circumstantiae,2010,30(6):1286-1294.
    [6] Barrero M A,Grimalt J O,Cantón L. Prediction of daily ozone concentration maxima in the urban atmosphere[J].Chemometrics and Intelligent Laboratory Systems,2006,80(1):67-76.
    [7] Gao M,Yin L T,Ning J C. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis[J].Atmospheric Environment,2018,184:129-139.
    [8] Mao X,Shen T,Feng X. Prediction of hourly ground-level PM2. 5concentrations 3 days in advance using neural networks with satellite data in eastern China[J]. Atmospheric Pollution Research,2017,8(6):1005-1015.
    [9] Gómez-Sanchis J,Martín-Guerrero J D,Soria-Olivas E,et al.Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration[J].Atmospheric Environment,2006,40(32):6173-6180.
    [10]丁愫,陈报章,王瑾,等.基于决策树的统计预报模型在臭氧浓度时空分布预测中的应用研究[J].环境科学学报,2018,38(8):3229-3242.Ding S,Chen B Z,Wang J,et al. An applied research of decision-tree based statistical model in forecasting the spatialtemporal distribution of O3[J]. Acta Scientiae Circumstantiae,2018,38(8):3229-3242.
    [11]靳小兵,徐会明,卜俊伟,等.决策树方法在一次历史异常雷电活动中的预报能力检验[J].高原山地气象研究,2013,33(4):56-60,78.Jin X B,Xu H M,Pu J W,et al. The forecast ability test of decision tree method in an abnormal lightning activity[J].Plateau and Mountain Meteorology Research,2013,33(4):56-60,78.
    [12] Vapnik V N. The nature of statistical learning theory[M]. New York:Springer,2000. 17-34.
    [13] García Nieto P J,Combarro E F,del Coz Díaz J J,et al. A SVM-based regression model to study the air quality at local scale in Oviedo urban area(Northern Spain):a case study[J].Applied Mathematics and Computation,2013,219(17):8923-8937.
    [14] Lu W Z,Wang W J. Potential assessment of the“support vector machine”method in forecasting ambient air pollutant trends[J].Chemosphere,2005,59(5):693-701.
    [15] Quej V H,Almorox J,Arnaldo J A,et al. ANFIS,SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2017,155:62-70.
    [16]赵文婧,赵中军,汪结华,等.基于支持向量机的云量精细化预报研究[J].干旱气象,2016,34(3):568-574,589.Zhao W J,Zhao Z J,Wang J H,et al. A study on refined forecast of cloud cover based on support vector machine[J].Journal of Arid Meteorology,2016,34(3):568-574,589.
    [17]熊秋芬,顾永刚,王丽.支持向量机分类方法在天空云量预报中的应用[J].气象,2007,33(5):20-26.Xiong Q F,Gu Y G,Wang L. Application of SVM method to cloud amount forecast[J]. Meteorological Monthly,2007,33(5):20-26.
    [18]吴波,胡邦辉,王学忠,等.基于近似支持向量机的能见度释用预报研究[J].热带气象学报,2017,33(1):104-110.Wu B,Hu B H,Wang X Z,et al. Visibility forecast based on proximal support vector machine[J]. Journal of Tropical Meteorology,2017,33(1):104-110.
    [19]郑朝霞,周梅,季致建,等. SVM方法在霾识别和能见度预报中的应用[J].气象科技进展,2016,6(6):30-34.Zheng Z X,Zhou M,Ji Z J,et al. Application of SVM method to identification of haze and prediction of visibility[J]. Advances in Meteorological Science and Technology,2016,6(6):30-34.
    [20] Canu S,Rakotomamonjy A. Ozone peak and pollution forecasting using support vectors[R]. Yokohama:IFAC,2001.
    [21] García Nieto P J,García-Gonzalo E,Sánchez A B,et al. Air quality modeling using the PSO-SVM-based approach, MLP neural network,and M5 model tree in the metropolitan area of Oviedo(Northern Spain)[J]. Environmental Modeling&Assessment,2018,23(3):229-247.
    [22] García Nieto P J,Sánchez Lasheras F,García-Gonzalo E,et al.PM10concentration forecasting in the metropolitan area of Oviedo(Northern Spain)using models based on SVM,MLP,VARMA and ARIMA:a case study[J]. Science of the Total Environment,2018,621:753-761.
    [23] Yeganeh B,Motlagh M S P,Rashidi Y,et al. Prediction of CO concentrations based on a hybrid partial least square and support vector machine model[J]. Atmospheric Environment,2012,55:357-365.
    [24]朱佳,王振会,金天力,等.基于小波分解和最小二乘支持向量机的大气臭氧含量时间序列预测[J].气候与环境研究,2010,15(3):295-302.Zhu J,Wang Z H,Jin T L,et al. Combination of wavelet decomposition and least square support vector machine to forcast atmospheric ozone content time series[J]. Climatic and Environmental Research,2010,15(3):295-302.
    [25] Niu M F,Gan K,Sun S L,et al. Application of decompositionensemble learning paradigm with phase space reconstruction for day-ahead PM2. 5concentration forecasting[J]. Journal of Environmental Management,2017,196:110-118.
    [26] Feng Y,Zhang W F,Sun D Z,et al. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification[J]. Atmospheric Environment,2011,45(11):1979-1985.
    [27] Xu Y Z,Yang W D,Wang J Z. Air quality early-warning system for cities in China[J]. Atmospheric Environment,2017,148:239-257.
    [28]王俊秀,安俊琳,邵平,等.南京北郊大气臭氧周末效应特征分析[J].环境科学,2017,38(6):2256-2263.Wang J X,An J L,Shao P,et al. Characteristic study on the“weekend effect” of atmospheric O3in northern Suburb of Nanjing[J]. Environmental Science,2017,38(6):2256-2263.
    [29] An J L,Zhu B,Wang H L,et al. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China[J]. Atmospheric Environment,2014,97:206-214.
    [30] Luna A S,Paredes M L L,de Oliveira G C G,et al. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro,Brazil[J]. Atmospheric Environment,2014,98:98-104.
    [31]安俊琳,朱彬,李用宇.南京北郊大气VOCs体积分数变化特征[J].环境科学,2013,34(12):4504-4512.An J L,Zhu B,Li Y Y. Variation characteristics of ambient volatile organic compounds(VOCs)in Nanjing northern suburb,China[J]. Environmental Science,2013,34(12):4504-4512.
    [32] Chelani A B. Prediction of daily maximum ground ozone concentration using support vector machine[J]. Environmental Monitoring and Assessment,2010,162(1-4):169-176.
    [33]张玉欣,安俊琳,王俊秀,等.南京工业区挥发性有机物来源解析及其对臭氧贡献评估[J].环境科学,2018,39(2):502-510.Zhang Y X,An J L,Wang J X,et al. Source analysis of volatile organic compounds in the Nanjing industrial area and evaluation of their contribution to ozone[J]. Environmental Science,2018,39(2):502-510.
    [34]邵平,安俊琳,杨辉,等.南京北郊夏季近地层臭氧及其前体物体积分数变化特征[J].环境科学,2014,35(11):4031-4043.Shao P,An J L,Yang H,et al. Variation characteristics of surface ozone and its precursors during summertime in Nanjing northern suburb[J]. Environmental Science,2014,35(11):4031-4043.