车削表面的形貌特征及法向接触特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Micromorphology and Normal Contact Characteristics of Turning Surface
  • 作者:缪小梅 ; 乐晓东
  • 英文作者:MIAO Xiao-mei;LE Xiao-dong;College of Mechanical technology, Wuxi Institute of Technology;Branch of Wuxi,Jiangsu Province Special Equipment Safety Supervision Inspection Institute;
  • 关键词:车削表面 ; 微观形貌 ; 支承长度率 ; 接触特性
  • 英文关键词:turning surface;;micro morphology;;bearing length rate;;contact characteristics
  • 中文刊名:ZHJC
  • 英文刊名:Modular Machine Tool & Automatic Manufacturing Technique
  • 机构:无锡职业技术学院机械技术学院;江苏省特种设备安全监督检验研究院无锡分院;
  • 出版日期:2019-05-20
  • 出版单位:组合机床与自动化加工技术
  • 年:2019
  • 期:No.543
  • 语种:中文;
  • 页:ZHJC201905009
  • 页数:4
  • CN:05
  • ISSN:21-1132/TG
  • 分类号:41-43+47
摘要
对车削表面微观形貌进行测量和分析,验证了车削表面的分形特性。基于测量数据对车削表面的表面支承长度率进行了计算和分析。通过电子万能试验机和位移传感器对表面的法向接触载荷和位移量进行测量,并对接触载荷与支承长度率的关系及法向接触刚度进行了研究。结果表明:车削表面是各向异性且不完全分形的。表面接触载荷和支承长度率的变化趋势是近似的。表面的接触刚度是随着干涉量的增加而增加的,且增加速度由快到慢并最终趋向于恒定值。研究结果为预测车削结合面的动静态性能提供了理论基础。
        The surface morphology of turning surface was measured and analyzed,and the fractal characteristics of turning surface were verified. Based on the measured data, the surface support length rate of turning surface was calculated and analyzed. The normal contact load and displacement of the surface are measured by universal material testing machine and displacement sensor. The relationship between the contact load and the support length rate and the normal contact stiffness are studied based on the measurement results. The results revealed that turning surfaces are anisotropic and not completely fractal. The variation trend of surface contact load and support length rate is basically consistent. The contact stiffness of the surface increases with the amount of interference, and the increase rate goes from fast to slow and eventually tends to a constant value. The results provide a theoretical basis for predicting static and dynamic performance of the turning interface.
引文
[1] Yu R,Chen W.Fractal modeling of elastic-plastic contact between three-dimensional rough surfaces[J].Industrial Lubrication & Tribology,DOI:10.1108/ILT-02-2017-0048.
    [2] Pan W,Li X,Wang L,et al.A loading fractal prediction model developed for dry-friction rough joint surfaces considering elastic–plastic contact[J].Acta Mechanica,2018(9):1-14.
    [3] 陈建江,原园,徐颖强.粗糙表面的加卸载分形接触解析模型[J].西安交通大学学报,2018,52(3):98-110.
    [4] Bhushan B,Yong C J.Natural and biomimetic artificial surfaces for superhydrophobicity,self-cleaning,low adhesion,and drag reduction[J].Progress in Materials Science,2011,56(1):1-108.
    [5] 秦红玲,郭建义,徐翔,等.滑动轴承表面形貌的分形模拟及对摩擦学性能的影响[J].润滑与密封,2018,43(2):47-52.
    [6] 刘绍鹏,王涛,李友荣,等.螺栓联接界面表面分形及接触研究[J].机械设计与制造,2016(5):107-110.
    [7] 王余松,张学良,温淑花,等.分形粗糙表面特征长度尺度参数小波识别法[J].机械工程学报,2018,54(5):185-192.
    [8] Andersen D H,Zhang Z L.Contact area on rough surface of nonlinear isotropic brittle materials[J].Wear,2011,271(7-8):1017-1028.
    [9] Dajczer M,Vlachos T.Isometric deformations of isotropic surfaces[J].Archiv Der Mathematik,2016,106(2):189-200.
    [10] Koguchi H,Nishi N.Contact Analysis Using Surface Green′s Functions for Isotropic Materials With Surface Stress and Surface Elasticity[C]// ASME 2010 International Mechanical Engineering Congress and Exposition,2010:19-28.
    [11] 王霄,梁春,刘会霞,等.车削真实粗糙表面的弹塑性接触有限元分析[J].润滑与密封,2008,33(12):72-74.
    [12] 冯攀.三维模拟表面弹塑性接触问题研究[D].西安:西安理工大学,2015.
    [13] 张学良.机械结合面动态特性及应用[M].北京:中国科学技术出版社,2002.