针对造纸厂硫化氢的高性能纳米α-Fe_2O_3/TiO_2气敏传感器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A High Performance Hydrogen Sulfide Gas Sensor Based on α-Fe_2O_3/TiO_2 Nanocomposite for Paper Mills
  • 作者:徐志武 ; 沈文浩
  • 英文作者:XU Zhiwu;SHEN Wenhao;State Key Laboratory of Pulp and Paper Engineering, South China University of Technology;
  • 关键词:造纸 ; 硫化氢 ; α-Fe_2O_3/TiO_2 ; 气敏传感器
  • 英文关键词:paper mills;;H_2S;;α-Fe_2O_3/TiO_2;;gas sensor
  • 中文刊名:GDZZ
  • 英文刊名:Paper Science & Technology
  • 机构:华南理工大学制浆造纸工程国家重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:造纸科学与技术
  • 年:2019
  • 期:v.38;No.225
  • 基金:广东省自然科学基金项目(2016A030313478);; 华南理工大学制浆造纸国家重点实验室自主创新研究基金项目(2017ZD03)
  • 语种:中文;
  • 页:GDZZ201901023
  • 页数:6
  • CN:01
  • ISSN:44-1532/TS
  • 分类号:74-79
摘要
针对被大众所忽视的造纸厂空气污染问题,以其中主要污染成分硫化氢为目标气体,采用液相反应工艺与后续退火工艺相结合的方法制备了α-Fe_2O_3/TiO_2复合纳米气敏传感器。首先,采用XRD,TEM和红外光谱对气敏材料的微观结构和化学组成进行了表征。其次,研究了纳米α-Fe_2O_3/TiO_2气敏传感器对硫化氢气体的气敏性能。研究结果表明,所制备的复合纳米材料纯度较高,以此为基础的纳米α-Fe_2O_3/TiO_2气敏传感器对体积分数为50×10~(-6)的硫化氢灵敏度为15.6,在120℃的工作温度下,比纯的纳米TiO_2的灵敏度提升到6.8倍,与大多数文献报道的金属氧化物气敏传感器工作温度300℃相比,工作温度下降了60%,传感器的响应与硫化氢浓度之间存在良好的线性关系,同时还具有较快的响应/恢复时间和良好的硫化氢选择性。
        Since H_2S has been revealed as one of the main gaseous pollutants in the ambient air of pulp and paper mills, a high performance of α-Fe_2O_3/TiO_2 gas sensor for the H_2S detection was developed by a liquid phase reaction process with the subsequent annealing process. Firstly, the microstructure and chemical composition of the synthesized gas sensing materials were characterized by the methods of XRD, TEM and FTIR. Subsequently, the H_2S gas sensing properties of the developed α-Fe_2O_3/TiO_2 nanocomposite sensor were studied. The study results showed that, the compositions of α-Fe_2O_3/TiO_2 were of high purity. Operated at the temperature of 120 ℃, for a volume fraction of 50×10~(-6)H_2S, the response of the α-Fe_2O_3/TiO_2 gas sensor was 15.6, which was 6.8 times higher than that of the pure TiO_2 material. Compared with the most reported metal oxides gas sensors whose operation temperatures were around 300 ℃, the operating temperature of the developed α-Fe_2O_3/TiO_2 gas sensor was reduced by 60%. Moreover, there was a good linear relationship between the response and the concentration of H_2S, and the developed α-Fe_2O_3/TiO_2 nanocomposite sensor also possessed the fast response/recovery time and excellent H_2S selectivity.
引文
[1] 童欣, 沈文浩. 废纸制浆造纸厂的气态污染物分析[J]. 造纸科学与技术, 2016, 35(3): 86-91. DOI:10.19696/j.issn1671-4571.2016.03.017
    [2] 童欣. 针对造纸污染气体主要成分的TiO2纳米管阵列膜制备及其气敏性能研究[D]. 广州:华南理工大学, 2017.
    [3] 柳旭. 二氧化钛基纳米管外延异质结的气敏传感与器件物理研究[D]. 北京:清华大学, 2012.
    [4] KOLHE P S, KOINKAR P M, MAITI N, et al. Synthesis of Ag doped SnO2 thin films for the evaluation of H2S gas sensing properties[J]. Physica B: Condensed Matter, 2017, 524: 90-96. DOI: 10.1016/j.physb.2017.07.056
    [5] 张娟, 袁昊, 向群, 等. 氧化铜纳米棒的水热合成及其气敏性能研究[J]. 电子元件与材料, 2009, 28(5): 27-29. DOI:10.3969/j.issn.1001-2028.2009.05.009
    [6] MORTEZAALI A, MORADI R. The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors[J]. Sensors and Actuators A: Physical, 2014, 206: 30-34. DOI: 10.1016/j.sna.2013.11.027
    [7] LI Yang, ZHAO Hui-jie, BAN Hui-tao, et al. Composites of Fe2O3 nanosheets with polyaniline: Preparation, gas sensing properties and sensing mechanism[J]. Sensors and Actuators B: Chemical, 2017, 245: 34-43. DOI: 10.1016/j.snb.2017.01. 103DOI: 10.1016/j.snb.2017.01.103
    [8] GUO Lan-lan, XIE Ning, WANG Chong, et al. Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning[J]. Sensors and Actuators B: Chemical, 2018, 255 (1): 1015-1023. DOI: 10.1016/j.snb.2017.07.055
    [9] SUN G J, KHEEL H, LEE J K. H2S gas sensing properties of Fe2O3 nanoparticle-decorated NiO nanoplate sensors[J]. Surface and Coatings Technology, 2016, 307: 1088-1095. DOI: 10.1016/j.surfcoat.2016.06.066
    [10] KATOCH A, CHOI S W, KIM J H, et al. Importance of the nanograin size on the H2S-sensing properties of ZnO-CuO composite nanofibers[J]. Sensors and Actuators B: Chemical, 2015, 214: 111-116. DOI: 10.1016/j.snb.2015.03.012
    [11] DENG Jia-nan, WANG Li-li, LOU Zheng, et al. Design of CuO-TiO2 heterostructure nanofibers and their sensing performance[J]. Journal of Materials Chemistry A, 2014, 2: 9030-9034. DOI: 10.1039/c4ta00160e
    [12] DENG Ji-wei, MA Jian-min, MEI Lin, et al. Porous Fe2O3 nanospheres-based H2S sensor with fast response, high selectivity and enhanced sensitivity[J]. Journal of Materials Chemistry A, 2013, 1: 12400-12403. DOI: 10.1039/c3ta12253k
    [13] SHEWALE P S, KAMBLE B N, MOHOIKAR A V, et al. Influence of substrate temperature on H2S gas sensing properties of nanocrystalline zinc oxide thin films prepared by advanced spray pyrolysis[J]. IEEE Sensors Journal, 2013, 13: 1992-1998. DOI: 10.1109/JSEN.2013.2246760
    [14] Vibrational Energy Search [EB/OL]. https://webbook.nist.gov/chemistry/vib-ser/#opennewwindow. [2018-12-10].
    [15] 鞠贵仁. 纳米TiO2光催化降解苯胺废水研究[D]. 石家庄: 河北科技大学, 2012.
    [16] ZHANG Hao, FENG Jian-chao, FEI Teng, et al. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature[J]. Sensors and Actuators B: Chemical, 2014, 190: 472-478. DOI: 10.1016/j.snb. 2013.08.067
    [17] WANG Yong-fan, QU Feng-dong, LIU Juan, et al. Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors[J]. Sensors and Actuators B: Chemical, 2015, 209: 515-523. DOI: 10.1016/j.snb.2014.12.010
    [18] MIRZAEI A, KIM S S, KIM H W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances[J]. Journal of Hazardous Materials, 2018, 357: 314-331. DOI: 10.1016/j.jhazmat.2018.06.015