微波流化床中稻谷的干燥模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The drying model of rice in the microwave fluidized bed
  • 作者:孙勤 ; 贾亚兵 ; 程榕 ; 杨阿三 ; 郑燕萍
  • 英文作者:SUN Qin;JIA Yabing;CHENG Rong;YANG Asan;ZHENG Yanping;College of Chemical Engineering,Zhejiang University of Technology;
  • 关键词:微波流化床 ; 稻谷干燥 ; 动力学模型
  • 英文关键词:microwave fluidized bed;;rice drying;;kinetic model
  • 中文刊名:ZJGD
  • 英文刊名:Journal of Zhejiang University of Technology
  • 机构:浙江工业大学化学工程学院;
  • 出版日期:2019-01-14
  • 出版单位:浙江工业大学学报
  • 年:2019
  • 期:v.47;No.197
  • 语种:中文;
  • 页:ZJGD201901020
  • 页数:5
  • CN:01
  • ISSN:33-1193/T
  • 分类号:113-117
摘要
采用自制的微波流化床设备对稻谷进行了干燥。实验测定了不同的热风温度(50~90℃)、微波功率密度(0~1.375 W/g)条件下稻谷微波流化床干燥曲线,并确定了干燥动力学模型。结果表明:微波功率密度越大、热风温度越高,所需干燥时间越短,水分扩散系数越大。干燥过程符合扩散模型,在实验条件范围内水分扩散活化能随着微波功率密度P的增加呈指数关系减小。随着微波功率密度的升高,Ea可降低2.3%~3%,干燥时间减少18%~24%。该模型可以很好地模拟不同条件下干燥过程中稻谷水分随时间变化规律。
        Self-developed microwave-fluidized bed was applied to dry rice.Drying curves of the rice under different air temperatures(50~90℃)and microwave power densities(0~1.375 W/g)were measured and the drying kinetics model was determined.The results show that the higher the microwave power density and the inlet air temperature,the shorter the drying time and the bigger the water diffusion coefficient.The drying process follows a diffusion model,and the activation energy of the water diffusion decreases exponentially with the increase of microwave power density P.With the increase of microwave power density,Eaand the drying time can be reduced by 2.3%~3%and 18%~24%,respectively.The model can well simulate the variation of the water in rice with time under different drying conditions.
引文
[1]王家万,王亚夫.微波加热原理及应用[J].吉林师范大学学报(自然科学版),2012,33(4):142-144.
    [2]刘玉婷,周英,尹大伟,等.微波技术在化学化工上的应用[J].化学世界,2010,51(8):505-508.
    [3]段振华,汪菊兰.微波干燥技术在食品工业中的应用研究[J].食品研究与开发,2007,28(1):155-158.
    [4]董铁有.微波干燥室内的能量分布研究[J].干燥技术与设备,2015(4):35-39.
    [5]SONG C F,WANG Y,WANG S,et al.Non-uniformity investigation in a combined thermal and microwave drying of silica gel[J].Applied thermal engineering,2016,98:872-879.
    [6]陈红英,刘伟,李军,等.微波协同活性炭氧化活性红X-3B中的H+效应[J].浙江工业大学学报,2014,42(6):4749-4740.
    [7]桑田,宋春芳,袁冬明,等.基于微波干燥的黑莓介电特性研究[J].浙江农业学报,2016,28(2):345-351.
    [8]石启龙,赵亚,王锡海.热风-微波联合干燥牛蒡的实验研究[J].食品工业科技,2011,32(6):320-322.
    [9]TALENS C,CASTRO-GIRALDEZ M,FITO P J,et al.Athermodynamic model for hot air microwave drying of orange peel[J].Journal of food engineering,2016,175:33-42.
    [10]ZHAO Y,JIANG Y,ZHENG B,et al.Influence of microwave vacuum drying on glass transition temperature,gelatinization temperature,physical and chemical qualities of lotus seeds[J].Food chemistry,2017,228:167-176.
    [11]WANG Z H,CHEN G H.Theoretical study of fluidized-bed drying with microwave heating[J].Industrial&engineering chemistry research,2000,39(3):775-782.
    [12]HORRUNGSIWAT S,THERDTHAI N,RATPHITAG-SANTI W,et al.Effect of combined microwave-hot air drying and superheated steam drying on physical and chemical properties of rice[J].International journal of food science&technology,2016,51(8):1851-1859.
    [13]于秀荣,赵思孟,周长智,等.微波干燥稻谷的研究[J].河南工业大学学报(自然科学版),1997(1):63-67.
    [14]潘志彦,胡方明,金赞芳,等.以焦末为载体的生物流化床流体力学与传质性能研究[J].浙江工业大学学报,2013,41(4):400-404.
    [15]陈红英,张骞,吴超,等.高色度去除率改性活性炭的制备与表征[J].浙江工业大学学报,2015,43(4):460-463.
    [16]史勇春.褐煤过热蒸汽气流干燥过程动力学模型研究[D].济南:山东大学,2012.
    [17]吕为乔,韩清华,李树君,等.微波干燥姜片模型建立与去水机理分析[J].农业机械学报,2015,46(4):233-237.
    [18]威尔特,威克斯,威尔逊,等.动量,热量和质量传递[M].马紫峰,译.北京:化学工业出版社,1988.
    [19]潘永康,王喜忠,刘相东.现代干燥技术[M].北京:化学工业出版社,2007.
    [20]王新稳,李萍,李延平.微波技术与天线[M].北京:电子工业出版社,2006.
    [21]宋玲玲,张丽娟,王喆,等.微波干燥对大豆机械强度及品质的影响[J].天津科技大学学报,2016,31(4):65-68.
    [22]朱德泉,王继先,朱德文,等.小麦微波干燥特性及其对品质的影响[J].农业工程学报,2006,22(4):182-185.