基于相离度和博弈论赋权的火电脱硝技术评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of coal-fired power denitration technologies based on deviation degree and game theory weighting method
  • 作者:许霁 ; 王贲 ; 于洁 ; 孙路石 ; 杨武
  • 英文作者:XU Ji;WANG Ben;YU Jie;SUN Lushi;YANG Wu;State Key Laboratory of Coal Combustion,Huazhong University of Science and Technology;
  • 关键词:相离度 ; 博弈论赋权法 ; 脱硝 ; 技术评价 ; 隶属函数
  • 英文关键词:deviation degree;;game theory weighting method;;denitration;;technology evaluation;;membership function
  • 中文刊名:JJMS
  • 英文刊名:Clean Coal Technology
  • 机构:华中科技大学煤燃烧国家重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:洁净煤技术
  • 年:2019
  • 期:v.25;No.120
  • 基金:国家重点研发计划资助项目(2018YFB0604202);; 中央高校基本科研业务费专项资金资助项目(2017JYCXJJ035)
  • 语种:中文;
  • 页:JJMS201902018
  • 页数:8
  • CN:02
  • ISSN:11-3676/TD
  • 分类号:128-135
摘要
为对火电脱硝技术进行科学评价,引入相离度理论改进了区间型指标的隶属函数,运用博弈论赋权法对指标体系进行集成赋权,建立了优化的脱硝技术评价模型。将该模型应用于国内完成炉内低氮改造的660 MW火电煤粉炉与流化床炉,综合评价选择性催化还原(SCR)、选择性非催化还原(SNCR)、SNCR-SCR联合3种脱硝技术。结果表明,在完成炉内低氮改造的条件下,额定负荷稳定运行的660 MW火电煤粉炉脱硝宜优先选用SCR技术,流化床炉应优先选用SNCR技术,为实现氮氧化物超低排放,必要时可选用SNCR-SCR联用技术,评价结果与《火电厂污染防治可行技术指南》的相关内容一致,验证了评价模型的合理性,额定负荷50%、75%工况下的评价结果表明,额定负荷50%工况下660 MW火电煤粉炉脱硝宜优先选用SNCR-SCR技术,其余低负荷工况的评价结果与额定工况一致,为火电脱硝技术的评价与选择提供了方法参考和理论依据。
        In order to get scientific evaluation result of coal-fired power denitrification technologies,deviation degree theory was applied to construct subordinate function of interval index,besides,the game theory weighting method was used in index weight calculation and optimizing evaluation model of denitrification technologies.The model was applied to the pulverized coal fired boiler and fluidized bed boiler with low NOxburner of 660 MW coal-fired plant in China.Three kinds of denitration technology,i.e.,selective catalyst reduction( SCR),selective non-catalyst reduction( SNCR) and hybrid SNCR-SCR,were comprehensively evaluated. Results show that SCR technology should be preferred for denitration of 660 MW thermal power pulverized coal furnace with stable rated load under the condition of low nitrogen reformation in the furnace,SNCR should be preferentially selected for the fluidized bed boiler,SNCR-SCR technology can be used to realize ultra low emission.More importantly,the evaluation results are consistent with the feasible technical guide for prevention and control of pollution in thermal power plants,which verifies the rationality of the evaluation model.The evaluation results under 75% and 50% load show that SNCR-SCR technology should be preferentially selected for the pulverized coal fired boiler under 50% load.The evaluation results of the remaining low-load working conditions are consistent with the rated load working conditions,which provides a reference and theoretical basis for the evaluation and technical selection of denitrification technologies.
引文
[1]周磊.燃煤电厂脱硝改造成本分析与补偿电价机制研究[D].保定:华北电力大学,2013.
    [2]WHO//Europe.Health aspects of air pollution with particulate matter,ozone and nitrogen dioxide[J].World Health Organization,2003,6:30.
    [3]HE K,YANG F,MA Y,et al.The characteristics of PM2.5 in Beijing,China[J].Atmospheric Environment,2001,35(29):4959-4970.
    [4]ZHAO Y,DUAN L,XING J.Soil acidification in China:is controlling SO2emissions enough[J].Environmental Science&Technology,2009,43(21):8021-8026.
    [5]苗强.脱硝技术的现状及展望[J].洁净煤技术,2017,23(2):12-19.MIAO Qiang.Progress and prospects of denitration technology[J].Clean Coal Technology,2017,23(2):12-19.
    [6]ZHOU J,WANG Y,LI B.Study on optimization of denitration technology based on gray-fuzzy combined comprehensive evaluation model[J].Systems Engineering Procedia,2012,4:210-218.
    [7]中国环境保护产业协会脱硫脱硝委员会.我国脱硫脱硝行业2016年发展综述[J].中国环保产业,2017(12):5-18.Desulfurization and Denitration Committee of CAEPI.Development report on desulfurization and denitration industries in 2016[J].China Environmental Protection Industry,2017(12):5-18.
    [8]GUO L,SHU Y,GAO J.Present and future development of flue gas control technology of de NOxin the world[J].Energy Procedia,2012,17(8):397-403.
    [9]SRIVASTAVA R K,HALL R E,KHAN S.Nitrogen oxides emission control options for coal-fired electric utility boilers.[J].Air Repair,2005,55(9):1367-88.
    [10]EBOLI L,FU Y,MAZZULLA G.Multilevel comprehensive evaluation of the railway service quality[J].Procedia Engineering,2016,137:21-30.
    [11]张淼.XX电厂锅炉烟气脱硝工艺技术方案优选研究[D].长春:吉林大学,2016.
    [12]余飞翔.长三角地区中小型工业锅炉烟气污染现状及控制技术综合评价[D].杭州:浙江大学,2017.
    [13]胡小刚.燃煤电厂烟气脱硝工艺的技术经济评价研究[D].西安:西北大学,2015.
    [14]孙广东.准格尔电厂脱硝系统技术改造综合效益评价研究[D].北京:华北电力大学(北京),2017.
    [15]朱方霞.区间数相离度的决策矩阵排序的一种新方法[J].合肥学院学报(自然科学版),2005,15(2):1-4.ZHU Fangxia.A new method based on deviation degree for priority of decision-making matrix[J].Journal of Hefei University(Natural Sciences),2005,15(2):1-4.
    [16]王书吉.大型灌区节水改造项目综合后评价指标权重确定及评价方法研究[D].西安:西安理工大学,2009.
    [17]于超,王书肖,郝吉明.基于模糊评价方法的燃煤电厂氮氧化物控制技术评价[J].环境科学,2010,31(7):1464-1469.YU Chao,WANG Shuxiao,HAO Jiming.Comprehensive fuzzy evaluation of nitrogen oxide control technologies forcoal-fired power plants[J].Environmental Science,2010,31(7):1464-1469.
    [18]徐青,黄昕,刘海力.垃圾焚烧电厂烟气脱硝技术的模糊综合评价[J].热力发电,2012,41(7):37-40.XU Qing,HUANG Xin,LIU Haili.Fuzzy Comprehensive evaluation for flue gas denitrification in MSW incineration power plants[J].Thermal Power Generation,2012,41(7):37-40.
    [19]张彩庆,胡文培.灰色层次分析法在脱硝技术评价中的应用[J].环境工程,2010,28(4):97-99.ZHANG Caiqing,HU Wenpei.Application of Grey-AHP in denitration technology evaluation[J].Environmental Engineering,2010,28(4):97-99.
    [20]汪培庄.模糊集合论及其应用[M].北京:科学技术出版社,1983:214-223.
    [21]郭金玉,张忠彬,孙庆云.层次分析法的研究与应用[J].中国安全科学学报,2008,18(5):148-153.GUO Jinyu,ZHANG Zhongbin,SUN Qingyun.Study and applications of analytic hierarchy process[J].China Safety Science Journa,2008,18(5):148-153.
    [22]马辉.综合评价系统中的客观赋权方法[J].合作经济与科技,2009(17):50-51.MA Hui.Objective empowerment method in comprehensive evaluation system[J].Co-operative Economy and Science,2009(17):50-51.
    [23]SAATY T L.Decision making with analytic hierarchy process[J].International Journal of Services Sciences,2008,1(1):83-98.
    [24]CAO W,XIAO H,ZHAO Q.The comprehensive evaluation system for meteorological disasters emergency management capability based on the entropy-weighting TOPSIS method[C]//International Conference on Information Systems for Crisis Response and Management.[S.l.]:IEEE,2012:434-439.
    [25]CHEN J H,WEI M,ZHOU K,et al.Entropy weighting ideal point model and application for safety evaluation of container port district[J].Mathematics in Practice&Theory,2016,46(9):71-79.
    [26]国家环境保护部.《火电厂氮氧化物防治技术政策(征求意见稿)》编制说明[Z].2010.
    [27]环境保护部.火电厂污染防治可行技术指南:HJ 2301-2017[S].北京:中国环境科学出版社,2017:13-20.
    [28]吴晓烽.燃煤电厂三种烟气脱硝技术的工艺比较分析[J].资源节约与环保,2014(5):15-19.WU Xiaofeng.Comparison and analysis of three flue gas denitrification technologies in coal-fired power plants[J].Resources Economization&Environmental Protection,2014(5):15-19.
    [29]项昆.3种烟气脱硝工艺技术经济比较分析[J].热力发电,2011,40(6):1-3.XIANG Kun.Comparison and analysis in techno-economic aspects for three kinds of flue gas denitrification technologies[J].Thermal Power Generation,2011,40(6):1-3.
    [30]国家能源局.火电厂烟气脱硝技术导则:DL/T 296-2011[S].北京:中国电力出版社,2011:2-5.
    [31]史建勇.燃煤电站烟气脱硫脱硝技术成本效益分析[D].杭州:浙江大学,2015.
    [32]董建勋,李永华,冯兆兴.选择性催化还原烟气脱硝反应器的变工况运行分析[J].动力工程学报,2008,28(1):142-146.DONG Jianxun,LI Yonghua,FENG Zhaoxing.Operation analysis of flue gas denitrification reactors with selective catalytic reduction under variable working conditions[J].Journal of Chinese Society of Power Engineering,2008,28(1):142-146.
    [33]陈华桂,何育生,戴兴干.现役燃煤机组全工况脱硝技术比较[J].电力工程技术,2017,36(5):160-164.CHEN Huagui,HE Yusheng,DAI Xingyu.Comparison of denitrification technology for in-service coal-fired unit in all conditions[J].Electric Power Engineering Technology,2017,36(5):160-164.