660MW燃煤机组热力系统构型调整对一次调频性能的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Regulating Thermal System Configuration for 660MW Coal-fired Power Units on the Performance of Primary Frequency Control
  • 作者:赵永亮 ; 张利 ; 刘明 ; 严俊杰
  • 英文作者:ZHAO Yongliang;ZHANG Li;LIU Ming;YAN Junjie;State Key Laboratory of Multiphase Flow in Power Engineering (Xi'an Jiaotong University);Electric Power Research Institute, State Grid Tianjin Electric Power Company;
  • 关键词:一次调频 ; 运行灵活性 ; 动态仿真 ; 燃煤发电机组
  • 英文关键词:primary frequency regulation;;operational flexibility;;dynamic simulation;;coal-fired power unit
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:动力工程多相流国家重点实验室(西安交通大学);国网天津市电力公司电力科学研究院;
  • 出版日期:2019-06-20
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.623
  • 基金:国家重点基础研究发展计划项目(2015CB251504);; 国家自然科学基金项目(51436006,51776146)~~
  • 语种:中文;
  • 页:ZGDC201912019
  • 页数:12
  • CN:12
  • ISSN:11-2107/TM
  • 分类号:217-228
摘要
提高燃煤发电机组一次调频特性是提高电网运行安全性的有效手段。基于GSE软件,建立660MW燃煤机组热力系统动态模型和一次调频控制系统模型,分析对比不同热力系统构型调整方案的主要参数动态特性和对一次调频性能的影响规律。结果表明:相比于低加抽汽节流和低加凝结水旁路,高加抽汽调节和高加给水旁路对主汽、再热蒸汽和给水参数影响较大。变负荷潜力方面,调节幅度最大为高加抽汽节流,数值为48.10MW,调节速度最快为低加抽汽节流,需要52s。一次调频性能方面,从快速性来看,最优方案为高加抽汽节流,调节时间为31s;从无偏性角度来看,最优方案为低加抽汽节流,调节偏差率为8.1%;从有效性角度来看,最优方案为高加给水旁路,整体调节效率为59.8%。同时,随着扰动频率的增大,快速性和有效性降低,无偏性提高。
        Improving characteristics of primary frequency control on coal-fired power system is an effective way to increase operational security of the power grid. In this study,the dynamic models of thermal system and models of primary frequency control on a 660 MW coal-fired power plant were developed by the GSE soft ware. Dynamic characteristics of the main thermal parameters was obtained, and the effects on the performance of primary frequency control at different measures of regulating thermal system configuration were analyzed and compared. The results reveal that compared with throttling extraction steam of low-pressure heaters(TESLPH)and condensate water bypass of low-pressure heaters(CWBLPH), the effects on the parameters of live steam, reheat steam, and feedwater at throttling extraction steam of high-pressure heaters(TESHPH) and feedwater bypass of high-pressure heaters(FWBHPH) is greater. With respect to the load change potential, the most regulation amplitude of output power is 48.1 MW at TESHPH measure, the fastest regulation rate of output power is at TESLPH measure and the required time is 52 s. With respect to the performances of primary frequency control, with regard to the rapidity, the best measure is TESHPH and the regulating time is 31 s. With regard to the unbiasedness, the best measure is TESLPH and the regulating deviation ratio is 8.1%. With regard to the effectiveness, the best measure is FWBHPH and the regulating efficiency is 59.8%. Moreover, with increasing the degree in frequency disturbance, the rapidity and effectiveness reduce, and the unbiasedness enhances.
引文
[1]Olauson J,Ayob M N,Bergkvist M,et al.Net load variability in Nordic countries with a highly or fully renewable power system[J].Nature Energy,2016,1(12):16175.
    [2]Lu Xi,Mc Elroy M B,Peng Wei,et al.Challenges faced by China compared with the US in developing wind power[J].Nature Energy,2016,1(6):16061.
    [3]Denholm P,Hand M.Grid flexibility and storage required to achieve very high penetration of variable renewable electricity[J].Energy Policy,2011,39(3):1817-1830.
    [4]舒印彪,张智刚,郭剑波,等.新能源消纳关键因素分析及解决措施研究[J].中国电机工程学报,2017,37(1):1-8.Shu Yinbiao,Zhang Zhigang,Guo Jianbo,et al.Study on key factors and solution of renewable energy accommodation[J].Proceedings of the CSEE,2017,37(1):1-8(in Chinese).
    [5]Ma Juan,Silva V,Belhomme R,et al.Evaluating and planning flexibility in sustainable power systems[J].IEEETransactions on Sustainable Energy,2013,4(1):200-209.
    [6]Alizadeh M I,Parsa Moghaddam M,Amjady N,et al.Flexibility in future power systems with high renewable penetration:a review[J].Renewable and Sustainable Energy Reviews,2016,57:1186-1193.
    [7]Ulbig A,Andersson G.Analyzing operational flexibility of electric power systems[J].International Journal of Electrical Power&Energy Systems,2015,72:155-164.
    [8]刘吉臻,曾德良,田亮,等.新能源电力消纳与燃煤电厂弹性运行控制策略[J].中国电机工程学报,2015,35(21):5385-5394.Liu Jizhen,Zeng Deliang,Tian Liang,et al.Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems[J].Proceedings of the CSEE,2015,35(21):5385-5394(in Chinese).
    [9]Shayeghi H,Shayanfar H A,Jalili A.Load frequency control strategies:a state-of-the-art survey for the researcher[J].Energy Conversion and Management,2009,50(2):344-353.
    [10]鲁宗相,李海波,乔颖.含高比例可再生能源电力系统灵活性规划及挑战[J].电力系统自动化,2016,40(13):147-158.Lu Zongxiang,Li Haibo,Qiao Ying.Power system flexibility planning and challenges considering high proportion of renewable energy[J].Automation of Electric Power Systems,2016,40(13):147-158(in Chinese).
    [11]鲁宗相,李海波,乔颖.高比例可再生能源并网的电力系统灵活性评价与平衡机理[J].中国电机工程学报,2017,37(1):9-19.Lu Zongxiang,Li Haibo,Qiao Ying.Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J].Proceedings of the CSEE,2017,37(1):9-19(in Chinese).
    [12]Gonzalez-Salazar M A,Kirsten T,Prchlik L.Review of the operational flexibility and emissions of gas-and coal-fired power plants in a future with growing renewables[J].Renewable and Sustainable Energy Reviews,2018,82:1497-1513.
    [13]邹金,赖旭,汪宁渤.大规模风电并网下的抽水蓄能机组调频控制研究[J].中国电机工程学报,2017,37(2):564-571.Zou Jin,Lai Xu,Wang Ningbo.Study on control of pumped storage units for frequency regulation in power systems integrated with large-scale wind power generation[J].Proceedings of the CSEE,2017,37(2):564-571(in Chinese).
    [14]叶小晖,刘涛,吴国旸,等.电池储能系统的多时间尺度仿真建模研究及大规模并网特性分析[J].中国电机工程学报,2015,35(11):2635-2644.Ye Xiaohui,Liu Tao,Wu Guoyang,et al.Multi-time scale simulation modeling and characteristic analysis of large-scale grid-connected battery energy storage system[J].Proceedings of the CSEE,2015,35(11):2635-2644(in Chinese).
    [15]黄卫剑,张曦,陈世和,等.提高火电机组一次调频响应速度[J].中国电力,2011,44(1):73-77.Huang Weijian,Zhang Xi,Chen Shihe,et al.Enhancing response speed of primary frequency regulation in thermal power unit[J].Electric Power,2011,44(1):73-77(in Chinese).
    [16]Egido I,Sigrist L,Lobato E,et al.An ultra-capacitor for frequency stability enhancement in small-isolated power systems:models,simulation and field tests[J].Applied Energy,2015,137:670-676.
    [17]Gao Lin,Dai Yiping.A new linear model of fossil fired steam unit for power system dynamic analysis[J].IEEETransactions on Power Systems,2011,26(4):2390-2397.
    [18]Hu Yong,Zeng Deliang,Liu Jizhen,et al.Dynamic model for controller design of condensate throttling systems[J].ISA Transactions,2015,58:622-628.
    [19]Long Dongteng,Wang Wei,Yao Chu,et al.An experiment-based model of condensate throttling and its utilization in load control of 1000MW power units[J].Energy,2017,133:941-954.
    [20]Wang Wei,Liu Jizhen,Zeng Deliang,et al.Modeling for condensate throttling and its application on the flexible load control of power plants[J].Applied Thermal Engineering,2016,95:303-310.
    [21]Wang Wei,Li Lu,Long Dongteng,et al.Improved boiler-turbine coordinated control of 1000MW power units by introducing condensate throttling[J].Journal of Process Control,2017,50:11-18.
    [22]Zhao Yongliang,Wang Chaoyang,Liu Ming,et al.Improving operational flexibility by regulating extraction steam of high-pressure heaters on a 660MW supercritical coal-fired power plant:a dynamic simulation[J].Applied Energy,2018,212:1295-1309.
    [23]Zhao Yongliang,Liu Ming,Wang Chaoyang,et al.Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes[J].Applied Energy,2018,228:2375-2386.
    [24]陈波,周慎学,丁宁,等.超(超)临界机组高加给水旁路调节方式的一次调频控制技术研究与试验[J].中国电力,2017,50(8):32-36.Chen Bo,Zhou Shenxue,Ding Ning,et al.Research and test of the primary frequency control in ultra-supercritical units under feed water bypass control of HP heater[J].Electric Power,2017,50(8):32-36(in Chinese).
    [25]汤可怡,杨建明,蔡喜冬.大型机组一次调频性能优化方法[J].发电设备,2016,30(6):374-377.Tang Keyi,Yang Jianming,Cai Xidong.Optimization on primary frequency regulation of large power units[J].Power Equipment,2016,30(6):374-377(in Chinese).
    [26]金飞,唐广通,杨春来.给水一次调频新技术在超超临界机组中的应用[J].河北电力技术,2016,35(3):30-32.Jin Fei,Tang Guangtong,Yang Chunlai.Application of water supply primary frequency modulation new technology in ultra supercritical unit[J].Hebei Electric Power,2016,35(3):30-32(in Chinese).
    [27]Hübel M,Meinke S,Andrén M T,et al.Modelling and simulation of a coal-fired power plant for start-up optimisation[J].Applied Energy,2017,208:319-331.
    [28]王朝阳,李冰心,苗国耀,等.660MW机组不同变负荷速率下瞬态过程的能耗特性研究[J].中国电机工程学报,2017,37(19):5665-5673.Wang Chaoyang,Li Bingxin,Miao Guoyao,et al.Study on energy consumption characteristics during transient processes of a 660MW coal-fired power plant with different load-variation rates[J].Proceedings of the CSEE,2017,37(19):5665-5673(in Chinese).
    [29]Wang Chaoyang,Zhao Yongliang,Liu Ming,et al.Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio[J].Applied Energy,2018,216:212-223.
    [30]Hentschel J,Zindler H,Spliethoff H.Modelling and transient simulation of a supercritical coal-fired power plant:dynamic response to extended secondary control power output[J].Energy,2017,137:927-940.
    [31]Wang Chaoyang,Liu Ming,Li Bingxin,et al.Thermodynamic analysis on the transient cycling of coal-fired power plants:simulation study of a 660MWsupercritical unit[J].Energy,2017,122:505-527.
    [32]王华伟,韩民晓,雷霄,等.火电机组直流孤岛系统频率控制分析与系统试验[J].中国电机工程学报,2017,37(1):139-148.Wang Huawei,Han Minxiao,Lei Xiao,et al.Frequency control analysis and system commissioning for thermal generation with HVDC islanded operation[J].Proceedings of the CSEE,2017,37(1):139-148(in Chinese).
    [33]Wang Di,Zhou Yunlong,Zhou Haichun.A mathematical model suitable for simulation of fast cut back of coal-fired boiler-turbine plant[J].Applied Thermal Engineering,2016,108:546-554.
    [34]Zhou Xia,Li Wei,Li Mengya,et al.Effect of the coordinative optimization of interruptible loads in primary frequency regulation on frequency recovery[J].Energies,2016,9(3):167-178.
    [35]张艳军,高凯,曲祖义.基于发电机组出力曲线特征的一次调频性能评价方法[J].电力系统自动化,2012,36(7):99-103.Zhang Yanjun,Gao Kai,Qu Zuyi.An evaluation method of primary frequency modulation performance based on characteristics of unit output power curves[J].Automation of Electric Power Systems,2012,36(7):99-103(in Chinese).