柳枝稷对镉、铅及其交互污染的耐性与累积效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Tolerance to Cdmium and Lead and their Cross-contamination and Accumulation Effect in Panicum virgatum
  • 作者:高娅妮 ; 刘倩 ; 柳旭 ; 王佺珍
  • 英文作者:GAO Yani;LIU Qian;LIU Xu;WANG Quanzhen;College of Animal Science and Technology,Northwest A&F University;
  • 关键词:柳枝稷 ; ; ; pH ; 植物修复
  • 英文关键词:Panicum virgatum;;lead;;cadmium;;pH;;phytoremediation
  • 中文刊名:JCST
  • 英文刊名:Journal of Domestic Animal Ecology
  • 机构:西北农林科技大学动物科技学院;
  • 出版日期:2019-02-15
  • 出版单位:家畜生态学报
  • 年:2019
  • 期:v.40;No.201
  • 基金:国家重点研发计划(2017YFE0111000);; 国家自然科学基金项目(31472138
  • 语种:中文;
  • 页:JCST201902011
  • 页数:9
  • CN:02
  • ISSN:61-1433/S
  • 分类号:61-69
摘要
利用3因素5水平正交旋转组合设计,采用盆栽试验,研究镉(Cd)、铅(Pb)胁迫及其交互作用对柳枝稷生理响应、根长、苗长及镉、铅富积的影响,评估柳枝稷对Cd、Pb污染土壤的修复潜力。结果表明:随着Cd和Pb胁迫浓度的增加,柳枝稷生长受到抑制。超氧化物歧化酶(SOD)活性呈先下降后上升的趋势,丙二醛(MDA)含量呈上升趋势。柳枝稷对Cd富集系数大于对Pb富集系数,且对Cd富集系数大于1,但其转移系数较低。3种胁迫中,pH对柳枝稷Cd和Pb累积无显著相关性(P>0.05)。Cd与Pb交互效应对柳枝稷Cd富集具有拮抗作用,而pH与Cd或Pb的交互效应则均表现为协同作用。当Cd浓度为75.6~94μg·g~(-1)、Pb浓度为471~645μg·g~(-1)和pH为4.8~5.1时,柳枝稷对Cd有效富集能力最高。研究结果显示,柳枝稷可用于Cd污染土壤的生态修复。
        This experiment uses an orthogonal rotated matrix design with three factors and five levels by apot experiment to determine the influence of cadmium(Cd),lead(Pb)stress and cross-contamination on the physiological response,length of root and shoot and Cd and Pb accumulation in Panicum virgatum,and therefore evaluating the phytoremediation potential of Panicum virgatum on contaminated soil.The results show that the length of root and shoot decreases with increased Cd and Pb,whereas the activity of superoxide dismutase(SOD)initially decreases and then increases,and the content of malondialdehyde(MDA)increases.The Cd bioaccumulation factor is greater than that of Pb,whose accumulation index is bigger than 1,but the transfer ratio is low.Among the three stresses,pH is not significantly correlated with the accumulation of Cd and Pb(P>0.05).The interaction of Cd and Pb has an antagonistic effect on the accumulation of Cd,whereas either the interaction of pH with Cd or with Pb has synergistic effects on it.The plant has the highest Cd accumulative ability at ranges of Cd concentration of 75.6~94μg·g~(-1),Pb concentration of 471~645μg·g~(-1) and pH of 4.8~5.1 after optimal modeling analysis.Therefore,Panicum virgatumcould be used as a phytoremediation plant in the Cd-contaminated soil.
引文
[1]SAULIUTE G,SVECEVICIUS G.Heavy metal interactions during accumulation via direct route in fish:A review[J].Zoology&Ecology,2015,259(1):77-86.
    [2]FATNASSI I C,CHIBOUB M,SAADANI O,et al.Impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of Vicia faba L.under copper stress[J].Comptes Rendus Biologies,2015,338(4):241-254.
    [3]苏姝,王颖,刘景,等.长期施肥下黑土重金属的演变特征[J].中国农业科学,2015,48(23):4 837-4 845.
    [4]SRIVASTAVA R K,PANDEY P,RAJPOOT R,et al.Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings[J].Protoplasma,2014,251(5):1 047-1 065.
    [5]KUMAR R S,SEONG-WOO C,JEONG K S,et al.Morphophysiological and proteome level responses to cadmium stress in sorghum[J].PLos One,2016,11(2):e0150431.
    [6]陈江民,杨永杰,黄奇娜,等.持续淹水对水稻镉吸收的影响及其调控机理[J].中国农业科学,2017,50(17):3 300-3 310.
    [7]ROSENBERG E.Heavy metals in water:presence,removal and safety[J].Johnson Matthey Technology Review,2014,59(4):293-297.
    [8]杜森,周岩岩,张黎.应用碳氮同位素技术研究重金属在大亚湾食物网中的累积[J].应用生态学报,2017,28(7):2 327-2 338.
    [9]车继鲁,余树全,刘晖,等.城市绿化树种香樟不同器官对土壤重金属的富集特征[J].应用生态学报,2017,28(9):2 907-2 916.
    [10]WANG Q Z,GU M Y,MA X M,et al.Model optimization of cadmium and accumulation in switchgrass(Panicum virgatum L.):potential use for ecological phytoremediation in Cd-contaminated soils[J].Environmental Science&Pollution Research International,2015,22(21):1-14.
    [11]RODRIGUEZ-HERNANDEZ M C,BONIFAS I,TORRE AD L,et al.Increased accumulation of cadmium and lead under Ca and Fe deficiency in Typha latifolia:A study of two pore channel(TPC1)gene responses[J].Environmental&Experimental Botany,2015,115(6):38-48.
    [12]OLATUNJI O,XIMBA B,FATOKI O,et al.Assessment of the phytoremediation potential of Panicum maximum(guinea grass)for selected heavy metal removal from contaminated soils[J].African Journal of Biotechnology,2015,13(19):1 979-1 984.
    [13]GUO H,FENG X,HONG C,et al.Malate secretion from the root system is an important reason for higher resistance of Miscanthus sacchariflorus to cadmium[J].Physiologia Plantarum,2016,159(3):340-353.
    [14]SARKAR M,KUMAR A,TUMULURU J S,et al.Gasification performance of switchgrass pretreated with torrefaction and densification[J].Applied Energy,2014,127(6):194-201.
    [15]ADKINS J,JASTROW J D,MORRIS G P,et al.Effects of switchgrass cultivars and intraspecific differences in root structure on soil carbon inputs and accumulation[J].Geoderma,2016,262(15):147-154.
    [16]REED R L,SANDERAON M A,ALLEN V G,et al.Growth and cadmium accumulation in selected switchgrass cultivars[J].Communications in Soil Science&Plant Analysis,1999,30(19/20):2 655-2 667.
    [17]刘长浩,娄来清,郭涛,等.柳枝稷和坚尼草的耐镉性初步研究[J].草业学报,2015,24(11):100-108.
    [18]刘影,伍钧,杨刚,等.3种能源草在铅锌矿区土壤中的生长及其对重金属的富集特性[J].水土保持学报,2014,28(5):291-296.
    [19]DEGRYSE F,SHAHBAZI A,VERHEYEN L,et al.Diffusion limitations in root uptake of cadmium and zinc,but not nickel,and resulting bias in the Michaelis constant[J].Plant Physiology,2012,160(2):1 097-1 109.
    [20]杨阳,陈卫平,李艳玲,等.基于不确定性分析的土壤-水稻系统镉污染综合风险评估[J].环境科学,2016,37(12):4 800-4 805.
    [21]ZHANG S,LI T,ZHANG X,et al.Changes in pH,dissolved organic matter and Cd species in the rhizosphere soils of Cd phytostabilizer Athyrium wardii(Hook.)Makino involved in Cd tolerance and accumulation[J].Environmental Science&Pollution Research,2014,21(6):4 605-4 613.
    [22]DENG L Y.Orthogonal arrays:theory and applications[J].Technometrics,2000,42(4):440.
    [23]王佺珍,韩建国,周禾,等.氮肥与植株密度互作对鸭茅种子产量的效应[J].草业科学,2005,22(5):38-44.
    [24]张显强,李超,谌金吾,等.镉、铅胁迫对三叶鬼针草(Bidens pilosa L.)种子萌发的影响[J].种子,2014,33(7):40-42.
    [25]HORMOZI-NEZHAD M R,KARAMI P,ROBATJAZI H.A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants[J].Rsc Advances,2013,3(1):7 726-7 732.
    [26]RAO K V M,SRESTY T V S.Antioxidative parameters in the seedlings of pigeonpea(Cajanus cajan L.)in response to Zn and Ni Stresses.Plant Science,2000,157(1):113-128.
    [27]FU J,HUANG B.Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress[J].Environmental and Experimental Botany,2001,45(2),105-114.
    [28]BEYER W F,FRIDOVICH I.Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli.Biochemistry,1987,26(5):1 251-1 257.
    [29]HE B Y,LING L,ZHANG L Y,et al.Cultivar-specific differences in heavy metal(Cd,Cr,Cu,Pb,and Zn)concentrations in water spinach(Ipomoea aquatic'Forsk')grown on metal-contaminated soil[J].Plant&Soil,2015,386(1/2):251-262.
    [30]WANG Q,XIE B,WU C,et al.Models analyses for allelopathic effects of chicory at equivalent coupling of nitrogen supply and pH level on F.arundinacea,T.repens and M.sativa[J].PLos One,2012,7(2):e31670.
    [31]LATTIN J M,CARROLL J D,GREEN P E.Analyzing multivariate data[M].Pacific Grove,CA,USA:Thomson Brooks/Cole,2003.
    [32]李冬琴,陈桂葵,郑海,等.镉对两品种玉豆生长和抗氧化酶的影响[J].农业环境科学学报,2015,34(2):221-226.
    [33]韩航,陈雪娇,侯晓龙,等.Cd胁迫对类芦生长及酶活性的影响[J].农业环境科学学报,2016,35(4):647-653.
    [34]张然然,张鹏,都韶婷.镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展[J].应用生态学报,2016,27(3):981-992.
    [35]刘孝利,曾昭霞,陈喆,等.湘中矿区不同用地类型面源Cd输出负荷的原位实验研究[J].环境科学,2013,34(9):3 557-3 561.
    [36]王月香,陈茂林,丁建文.污泥中铜、锌元素有效态和形态受酸碱度影响的研究[J].科学技术与工程,2014,14(18):305-309.
    [37]SIPOS G,SOLTI,CZECH V,et al.Heavy metal accumulation and tolerance of energy grass(Elymus elongatus subsp.ponticus cv.Szarvasi-1)grown in hydroponic culture[J].Plant Physiology and Biochemistry,2013,68(7):96-103.
    [38]王学华,戴力.作物根系镉滞留作用及其生理生化机制[J].中国农业科学,2016,49(22):4 323-4 341.
    [39]刘媛,马文超,张雯,等.镉胁迫对秋华柳根系活力及其Ca、Mg、Mn、Zn、Fe积累的影响[J].应用生态学报,2016,27(4):1 109-1 115.
    [40]田景花,王红霞,张志华,等.低温逆境对不同核桃品种抗氧化系统及超微结构的影响[J].应用生态学报,2015,26(5):1 320-1 326.
    [41]GAWES,WARDAS M,NIEDWOROK E,et al.Malondialdehyde(MDA)as a lipid peroxidation marker[J].Wiadomosci Lekarskie,2004,57(9/10):453-455.
    [42]李红婷.4种宿根花卉对铅、镉吸收累积特性的研究[D].长春:吉林农业大学,2015.
    [43]归静,刘娟,高伟,等.虉草用于干旱地区土壤镉和铜污染修复的潜力[J].农业环境科学学报,2016,35(2):281-287.
    [44]ZHANG C,GUO J,LEE D K,et al.Growth responses and accumulation of cadmium in switchgrass(Panicum virgatum L.)and prairie cordgrass(Spartina pectinata Link)[J].Rsc Advances,2015,5(102):83 700-83 706.
    [45]XU P,WANG Z.A comparison study in cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L.[J].Water Air&Soil Pollution,2014,225(5):1-9.
    [46]CHEN B C,LAI H Y,JUANG K W.Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass[J].Ecotoxicology&Environmental Safety,2012,80(1):393-400.
    [47]国家环境保护局科技标准司.土壤环境质量标准:GB 15618-1995[S].北京:中国标准出版社,1995.
    [48]LIU W,WANG Q,WANG B,et al.Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola,in a Cd-contaminated soil[J].Journal of Soils&Sediments,2015,15(5):1 191-1 199.
    [49]赵青青,王海波,史静.生物质炭对Cd污染土壤根际微团聚体Cd形态转化的影响[J].环境科学研究,2018,31(3):555-561.