圆叶玉兰叶片非结构性碳水化合物与氮、磷含量对海拔的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses to non-structural carbohydrates and nitrogen and phosphorus content in the leaves of Magnolia sinensis along different altitude gradients
  • 作者:康喜坤 ; 陈小红 ; 龚伟 ; 张腾驹
  • 英文作者:KANG Xikun;CHEN Xiaohong;GONG Wei;ZHANG Tengju;College of Forestry, Sichuan Agricultural University;
  • 关键词:圆叶玉兰 ; 非结构性碳水化合物 ; ;
  • 英文关键词:Magnolia sinensis;;non-structural carbohydrates;;nitrogen;;phosphorous
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:四川农业大学林学院;
  • 出版日期:2019-03-21 09:04
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家林业局第二次全国重点野生植物资源调查项目(003Z0304)
  • 语种:中文;
  • 页:STXB201911024
  • 页数:7
  • CN:11
  • ISSN:11-2031/Q
  • 分类号:256-262
摘要
非结构性碳水化合物(non-structural carbohydrates, NSC)、氮(N)和磷(P)是植物生长的重要能源物质和影响植物分布的限制生长因子,圆叶玉兰(Magnolia sinensis)是四川省特有的珍稀濒危极小种群野生植物,研究其NSC、N和P可以反映它的营养供应水平及对环境的适应策略。选取芦山6个海拔梯度(1840,1960,2070,2170,2270,2390 m)的圆叶玉兰为对象,研究不同海拔下圆叶玉兰叶片中NSC与N、P及其化学计量间的关系。结果表明,圆叶玉兰叶片可溶性糖含量在2390 m处显著高于1840 m处, NSC含量在不同海拔差异极显著,随海拔增加呈"低-高-低"的单峰变化,2170 m处叶片NSC含量最高,碳水化合物供应充足;可溶性糖/淀粉的比值随海拔升高呈增大趋势,N含量和N/P比都随海拔上升而下降,且N/P比在各海拔上均小于14,NSC/N比在2390 m处显著高于1840 m处。总之,圆叶玉兰叶片的可溶性糖和NSC含量显著不受海拔的影响,较高的可溶性糖含量有利于抵御低温环境,其生长主要受氮元素限制而不受碳限制,反映了濒危植物圆叶玉兰在其有限的分布范围内NSC及N、P的保护策略,为圆叶玉兰的碳代谢和生长适应对策提供数据基础。
        Non-structural carbohydrates(NSC), nitrogen(N), and phosphorus(P) are important energy sources for plant growth, and their deficiencies affect plant growth factors. Magnolia sinensis is a rare and endangered species of wild plant in Sichuan province, and studies of its NSC, N, and P can reflect its nutritional supply level and adaptation strategies to the environment. The present study was conducted to evaluate M. sinensis at six altitudes(1840, 1960, 2070, 2170, 2270, 2390 m) in Lushan, and the NSC, N, and P content and their stoichiometry in the leaves at different altitudes were analyzed. The results showed that the soluble sugar content of M. sinensis in 2390 m leaves was significantly higher than that in 1840 m leaves. The NSC content at different altitudes was extremely significant, showing a unimodal change of "low-high-low" with increasing altitude. The NSC content of 2170 m leaves was the highest, and the carbohydrate supply was sufficient, ratio of soluble sugar/starch increased with altitude, N content and N/P ratio decreased with altitude, and N/P ratio was less than 14. The NSC/N ratio at 2390 m was significantly higher than that at 1840 m. The results showed that the soluble sugar and NSC content in the leaves of M. sinensis were not affected by the altitude, a higher soluble sugar content was beneficial for resisting the low-temperature environment, and growth was mainly limited by nitrogen but not by carbon. The protective strategies of NSC, N, and P in the limited distribution range of the endangered plant M. sinensis were determined, providing information on carbon metabolism and adaptation strategies used by this plant.
引文
[1] K?rner C.Carbon limitation in trees.Journal of Ecology,2003,91(1):4- 17.
    [2] Ericsson T,Rytter L,Vapaavuori E.Physiology of carbon allocation in trees.Biomass and Bioenergy,1996,11(2/3):115- 127.
    [3] Millard P,Sommerkorn M,Grelet G A.Environmental change and carbon limitation in trees:a biochemical,ecophysiological and ecosystem appraisal.New Phytologist,2007,175(1):11- 28.
    [4] Farrar J F,Jones D L.The control of carbon acquisition by roots.New Phytologist,2000,147(1):43- 53.
    [5] Reich P B,Walters M B,Tjoelker M G,Vanderklein D,Buschena C.Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate.Functional Ecology,1998,12(3):395- 405.
    [6] Reich P B,Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001- 11006.
    [7] Barbaroux C,Bréda N.Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees.Tree Physiology,2002,22(17):1201- 1210.
    [8] 潘红丽,李迈和,蔡小虎,吴杰,杜忠,刘兴良.海拔梯度上的植物生长与生理生态特性.生态环境学报,2009,18(2):722- 730.
    [9] 郭子武,胡俊靖,杨清平,李迎春,陈双林,陈卫军.林地覆盖经营对雷竹叶片非结构性碳水化合物与氮、磷关系的影响.应用生态学报,2015,26(4):1064- 1070.
    [10] 潘红丽,冯秋红,隆廷伦,何飞,刘兴良.四川省极小种群野生植物资源现状及其保护研究.四川林业科技,2014,35(6):41- 46.
    [11] 曾洪,陈小红.极小种群野生植物圆叶玉兰的生态位研究.四川农业大学学报,2017,35(2):220- 226.
    [12] 周永斌,吴栋栋,于大炮,隋琛莹.长白山不同海拔岳桦非结构碳水化合物含量的变化.植物生态学报,2009,33(1):118- 124.
    [13] 国家林业局.森林植物与森林枯枝落叶层全氮、磷、钾、钠、钙、镁的测定:LY/T 1271- 1999.北京:中国标准出版社,1999.
    [14] Würth M K R,Peláez-Riedl S,Wright S J,K?rner C.Non-structural carbohydrate pools in a tropical forest.Oecologia,2005,143(1):11- 24.
    [15] Barbaroux C,Bréda N,Dufrêne E.Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica).New Phytologist,2003,157(3):605- 615.
    [16] Yu D P,Wang Q W,Liu J Q,Zhou W M,Qi L,Wang X Y,Zhou L,Dai L M.Formation mechanisms of the alpine Erman′s birch ( Betula ermanii) treeline on Changbai Mountain in Northeast China.Trees,2014,28(3):935- 947.
    [17] Li M H,Xiao W F,Wang S G,Cheng G W,Cherubini P,Cai X H,Liu X L,Wang X D,Zhu W Z.Mobile carbohydrates in Himalayan treeline trees I.Evidence for carbon gain limitation but not for growth limitation.Tree Physiology,2008,28(8):1287- 1296.
    [18] Hoch G,K?rner C.Global patterns of mobile carbon stores in trees at the high-elevation tree line.Global Ecology & Biogeography,2012,21(7/8):861- 871.
    [19] Shi P,K?rner C,Hoch G.A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas.Functional Ecology,2008,22(2):213- 220.
    [20] Shi P,K?rner C,Hoch G.End of season carbon supply status of woody species near the treeline in western China.Basic and Applied Ecology,2006,7(4):370- 377.
    [21] Hoch G,K?rner C.The carbon charging of pines at the climatic treeline:a global comparison.Oecologia,2003,135(1):10- 21.
    [22] 潘庆民,韩兴国,白永飞,杨景成.植物非结构性贮藏碳水化合物的生理生态学研究进展.植物学通报,2002,19(1):30- 38.
    [23] 吴杰,潘红丽,杜忠,王三根,石培礼,刘兴良,肖文发,李迈和.卧龙竹类非结构性碳水化合物与叶氮含量对海拔的响应.生态学报,2010,30(3):610- 618.
    [24] 王彪,江源,王明昌,董满宇,章异平.芦芽山不同海拔白杄非结构性碳水化合物含量动态.植物生态学报,2015,39(7):746- 752.
    [25] Thompson K,Parkinson J A,Band S R,Spencer R E.A comparative study of leaf nutrient concentrations in a regional herbaceous flora.New Phytologist,1997,136(4):679- 689.
    [26] 付登高.滇中不同植物群落植物功能性状的研究[D].昆明:云南大学,2010.
    [27] Tessier J T,Raynal D J.Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.Journal of Applied Ecology,2003,40(3):523- 534.
    [28] 马任甜,安韶山,黄懿梅.黄土高原不同林龄刺槐林碳、氮、磷化学计量特征.应用生态学报,2017,28(9):2787- 2793.
    [29] Li M H,Xiao W F,Shi P,Wang S G,Zhong Y D,Liu X L,Wang X D,Cai X H,Shi Z M.Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.Plant,Cell & Environment,2008,31(10):1377- 1387.