不同糖源对葡萄试管苗蛋白激酶相关基因表达的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Sugar Sources on Protein Kinase Gene Expression in Grape Plantlets
  • 作者:梁国平 ; 李文芳 ; 陈佰鸿 ; 左存武 ; 马丽娟 ; 何红红 ; 万鹏 ; 安泽山 ; 毛娟
  • 英文作者:LIANG GuoPing;LI WenFang;CHEN BaiHong;ZUO CunWu;MA LiJuan;HE HongHong;WAN Peng;AN ZeShan;MAO Juan;College of Horticulture, Gansu Agricultural University;
  • 关键词:RNA-Seq ; 外源糖 ; 蛋白激酶 ; 信号转导
  • 英文关键词:RNA-seq;;exogenous sugar;;protein kinase;;signaling transduction
  • 中文刊名:ZNYK
  • 英文刊名:Scientia Agricultura Sinica
  • 机构:甘肃农业大学园艺学院;
  • 出版日期:2019-04-01
  • 出版单位:中国农业科学
  • 年:2019
  • 期:v.52
  • 基金:国家自然科学基金(31460500);; 甘肃省科技重大专项计划(18ZD2NA006-4);; 甘肃省现代水果产业体系岗位专家项目(GARS-SG-3)
  • 语种:中文;
  • 页:ZNYK201907001
  • 页数:17
  • CN:07
  • ISSN:11-1328/S
  • 分类号:6-22
摘要
【目的】探究不同外源糖对葡萄试管苗生长发育及蛋白激酶基因转录调控的影响,应用转录组测序挖掘蛋白质磷酸化过程中的基因,为葡萄蛋白激酶相关基因功能的验证奠定一定基础。【方法】在基本培养基中分别添加2%的蔗糖、葡萄糖和果糖,以无糖为对照,分别命名为S20、G20、F20和CK,经过37 d培养后,测定不同处理的地上和地下鲜重,并采用Illumina HiSeq~(TM) 2000对各处理叶片进行转录组测序,通过综合生物信息学分析(参考基因组比对、差异基因(DEGs)筛选、COG(Cluster of Orthologous Groups of proteins)注释、GO(Gene Ontology)注释等)筛选出蛋白激酶相关基因,通过qRT-PCR分析该蛋白激酶相关基因的表达特性。【结果】F20、G20和S20处理下的葡萄(‘红地球’)试管苗与CK相比,地上鲜重具有明显差异,且F20最高,而G20地下鲜重最高。SNP统计发现,转换是主要的变异类型,颠换次之,且发生在基因间区的SNP数量最多,其次是下游;剪接位点供体和同义终止发生的基因数量最少且相等。4个样品中共获得了2 633个差异基因,3个处理与CK相比,共有差异基因180个且被聚类为3组,第一组中127个基因仅在CK中高表达,第二组19个基因仅在G20下高表达,而第三组34个基因在3个处理下表达模式不尽相同。这些共有的差异基因在COG中注释到了26个基因并分在11个功能类别中,且主要注释在一般的功能类别中。在GO分类中,共有的基因分别被注释在分子功能、生物学过程和细胞组分的14、22和13个功能类别中。共筛选出7种蛋白激酶,分别为葡萄糖激酶(Glucokinase,GK)、丝裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPKs)、钙调蛋白激酶(Calcineurin protein kinase,CBL)、蛋白磷酸酶2(Protein phosphatase 2,PP2A)、己糖激酶(Hexokinase,HXK)、组氨酸蛋白激酶(Histidine protein kinase,HPK)和酪氨酸激酶(Tyrosine kinase,TK),其不同激酶的基因在不同处理中具有各自的表达模式,经qRT-PCR验证,选择的20个差异基因中有17个基因表达与转录组测序结果相一致。【结论】在葡萄试管苗培养中,果糖较葡萄糖和蔗糖相比对生长较好。测序得出180个差异基因对3种不同糖均作出响应,这些基因在COG数据库中主要富集在膜酯转运和代谢、次级代谢物和碳水化合物的合成、转运和分解;GO中大多注释在蛋白激酶和氧化还原酶的活性中;筛选出了7种蛋白激酶,这些差异基因在数量、功能分类和代谢通路上对糖的响应各不相同。
        【Objective】 To explore the effects of different exogenous sugars on the growth and development of grape plantlets and the regulation of protein kinase gene transcription, the candidate genes were tapped in the process of protein phosphorylation by using transcription, which made a foundation for the verification of grape protein kinase-related gene function.【Method】 Sucrose(2%), glucose(2%) and fructose(2%) were added to the basic medium, and the free-sugar treatment was as control, which were named as S20, G20, F20 and CK, respectively. After 37 days of culture, the fresh weight of the leaf-stem and root under different treatments was determined. Transcriptome sequencing of each treated foliages was performed by using Illumina HiSeq~(TM) 2000, and a series of protein kinases related genes were screened by integrated bioinformatics analysis, including reference genomic alignment,differentially expressed gene(DEGs) screening, COG(Cluster of Orthologous Groups of proteins) annotation, GO(Gene Ontology)annotation, etc., and the expression characteristic of these genes were further analyzed by qRT-PCR. 【Result】 Compared with CK,‘Red Globe' grape plantlets under F20, G20 and S20 treatments exhibited significant differences in the fresh weight of leaf-stem, and the highest was obtained by F20 treatment, while the weight of fresh root under G20 was the highest. The SNP statistics found that the Transition was the main type of mutation, the second was Transversion. The highest number of SNPs that occurred in the Intergenic, and the next was the Upstream. Splice_Site_Donor and Synonymous_Stop events occurred with the least number of genes and equal. A total of 2 633 deferentially expressed genes were obtained in the 4 samples. The Venn diagram showed that there were a total of 180 differential genes under the 3 treatments compared with CK, and these genes were clustered into 3 groups. In the first group, 127 genes were only highly expressed under CK. The 19 genes of the second group were only highly expressed under G20,while the expression patterns of the 34 genes in third group were different under three treatments. The common 180 differential genes were annotated with 26 genes in the COG database to 11 functional categories, and these DEGs were mainly enriched in general functional categories. In the annotation of GO, the common genes were annotated in 14, 22 and 13 functional categories of molecular function, biological process and cellular component, respectively. Seven kinds of protein kinases were screened by this sequencing, including Glucokinase(GK), Mitogen-activated protein kinases(MAPKs), Calcineurin protein kinase(CBL), Protein phosphatase 2(PP2 A), Hexokinase(HXK), Histidine protein kinase(HPK) and Tyrosine kinase(TK), and these different protein kinases genes showed their own expression patterns among different treatments. By qRT-PCR analysis, 17 out of 20 screened genes expression were consistent with the transcriptome sequencing results. 【Conclusion】 Compared with glucose and sucrose, fructose was the best sugar during grape culture process. The sequencing results showed that 180 DEGs all responded to three different sugars.In the COG annotation, these genes were mainly enriched in membrane ester transport and metabolism, the synthesis, transport and decomposition of secondary metabolites and carbohydrates. In the GO databases, the most of common DEGs were annotated in the activities of protein kinases and oxidoreductases. Seven protein kinases were identified, which were selectively in responses to different exogenous sugars in quantity, functional, category and metabolic pathways, and had their own choice of expression specificity.
引文
[1]KADLECEK P,RANK B,TICHA I.Photosynthesis and photoprotection in Nicotiana tabacum L.in vitro-grown plantlets.Journal of Plant Physiology,2003,160(9):1017.
    [2]RUAN Y L.Sucrose metabolism:Gateway to diverse carbon use and sugar signaling.Annual Review of Plant Biology,2014,65:33-67.
    [3]YUE C,CAO H L,WANG L,ZHOU Y H,HUANG Y T,HAO X Y,WANG Y C,WANG B,YANG Y J,WANG X C.Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season.Plant Molecular Biology,2015,88:591-608.
    [4]SOLAROVA J,POSPHILSILOVA J,CATSKY J,SANTRUCEK J.Photosynthesis and growth of tobacco plantlets independence on carbon supply.Photosynthetica,1989,23(4):629-637.
    [5]SMEEKENS S,MA J K,HANSON J,ROLLAND F.Sugar signals and molecular networks controlling plant growth.Current Opinion in Plant Biology,2010,13(3):273-278.
    [6]NGUYEN Q T,KOZAI T,NIU G,NGUYEN U V.Photosynthetic characteristics of coffee(Coffea arabusta)plantlets in vitro in response to different CO2 concentrations and light intensities.Plant Cell Tissue&Organ Culture,1999,55:133-139.
    [7]张曦,林金星,单晓昳.拟南芥无机氮素转运蛋白及其磷酸化调控研究进展.植物学报,2016,51(1):120-129.ZHANG X,LIN J X,SHAN X Y.Progress in inorganic nitrogen transport proteins and their phosphorylation regulatory mechanism in Arabidopsis.Chinese Bulletin of Botany,2016,51(1):120-129.(in Chinese)
    [8]尹双双,高文远,王娟,刘辉,左北梅.药用植物不定根培养的影响因素.中国中药杂志,2012,37(24):3691-3694.YIN S S,GAO W Y,WAN J,LIU H,ZUO B M.Influencing factors on culture of medicinal plants adventitious roots.China Journal of Chinese Material Medcia,2012,37(24):3691-3694.(in Chinese)
    [9]邹英宁.不同碳源对中国李离体培养的影响.安徽农业科学,2010,38(4):1720,1776.ZOU Y N.Effect of different carbon sources on the culture of Chinese plum(Prunus salicina)in vitro.Journal of Anhui Agricultural Sciences,2010,38(4):1720,1776.(in Chinese)
    [10]王博,范桂枝,詹亚光,李康.不同碳源对白桦愈伤组织生长和三萜积累的影响.植物生理学通讯,2008,44(1):97-99.WANG B,FAN G Z,ZHAN Y G,LI K.Effects of different carbon sources on callus growth and accumulation of triterpenoids in Birch(Betula platyphylla suck.).Plant Physiology Communications,2008,44(1):97-99.(in Chinese)
    [11]王思瑶,崔瞳肸,翟睿,林香雨,李欣,孙璐,詹亚光,尹静.不同碳源对柽柳丛生芽生长、三萜及黄酮物质积累的影响.植物生理学报,2017,53(12):2189-2196.WANG S Y,CUI T X,ZHAI R,LIN X Y,LI X,SUN L,ZHAN Y G,YIN J.Effects of different carbon sources on the growth and accumulation of triterpenoids and flavonoids in tufted buds of Tamarix chinensis.Plant Physiology Journal,2017,53(12):2189-2196.(in Chinese)
    [11]王爱民,刘文,傅中滇.不同碳源对红边朱蕉组培苗生长的影响.徐州师范大学学报(自然科学版),2003,21(3):76-78.WANG A M,LIU W,FU Z D.A preliminary study on the reducing cost of tissue culture plantlet of cordyline terminalis.Journal of Xuzhou Normal University((Nature Sciences Edition),2003,21(3):76-78.(in Chinese)
    [12]KOZAI T,KUBOTA C,JEONGB R.Environmental control for the large-scale production of plants through in vitro techniques.Plant Cell Tissue&Organ Culture,1997,51:49-56.
    [13]GUGLIELMINETTI L,PERATA P,MORITA A,LORETI E,YAMAGUCHI J,ALPI A.Characterization of isoforms of hexose kinases in rice embryo.Phytochemistry,2000,53(2):195-200.
    [14]TURNER J F,CHENSEE,HARISSON D D.Glucokinase of pea seeds.Biochimica et Biophysica Acta-Enzymology,1997,480:367-375.
    [15]MARTINEZ-BARAJAS E,RANGALL D D.Purification and characterization of a glucokinase from young tomato(Lycopersicon esculentum L.Mill.)fruct.Planta,1998,205:567-573.
    [16]赵书平,谈宏斌,鹿丹,裴丽丽,崔喜艳,马有志,陈明,徐兆师,张小红.植物蛋白激酶介导的非生物胁迫和激素信号转导途径的研究进展.植物遗传资源学报,2017,18(2):358-366.ZHAO S P,TAN H B,LU D,PEI L L,CUI X Y,MA Y Z,CHEN M,XU Z S,ZHANG X H.Research progress of plant protein kinase mediated abiotic stress and hormone signal transduction pathway.Journal of Plant Genetic Resources,2017,18(2):358-366.(in Chinese)
    [17]RANTY B,ALDON D,GALAUD J P.Plant calmodulins and calmodulin-related proteins:Multifaceted relays to decode calcium signals.Plant Signaling&Behavior,2006,1(3):96-104.
    [18]BATISTIC O,KUDLA J.Integration and channeling of calcium signaling through the CBL calciumsensor/CIPK protein kinase network.Planta,2004,219:915-924.
    [19]WEINL S,KUDLA J.The CBL-CIPK Ca2+-decoding signaling network:Function and perspectives.New Phytologist,2009,184(3):517-528.
    [20]LUAN S.The CBL-CIPK network in plant calcium signaling.Trends in Plant Science,2009,14:37-42.
    [21]YU Q Y,AN L J,LI W L.The CBL-CIPK network mediates different signaling pathways in plants.Plant Cell Reports,2014,33:203-214.
    [22]KENTARO F,TOMOYUKI F,SHUN-ICHI Y,TETSU S,YUSUKEK,YUTAKA Y,HIROMI K,HITOSHI N,TOMOTAKE K.The PP2A-like protein phosphatase ppg1 and the far complex cooperatively counteract CK2-mediated phosphorylation of Atg32 to inhibit mitophagy.Cell Reports,2018,23:3579-3590.
    [23]刘钊,贾霖,贾盟,关明俐,曹英豪,刘丽娟,曹振伟,李莉云,刘国振.水稻PP2Ac类磷酸酶蛋白质在盐胁迫下的表达.中国农业科学,2012,45(12):2339-2345.LIU Z,JIA S,JIA M,GUAN M L,CAO Y H,LIU L J,CAO Z W,LIL Y,LIU G Z.Expression on profiling of rice PP2Ac type phosphatase proteins in seedlings under salt-stressed conditions.Scientia Agricultura Sinica,2012,45(12):2339-2345.(in Chinese)
    [24]雍彬,何兵,徐攀,虞传洋,王东.甘薯HXK基因的克隆、组织表达及生物信息分析.四川大学学报(自然科学版),2014,51(2):378-384.YONG B,HE B,XU P,YU C Y,WANG D.Cloning,organ-specific expression pattern and sequence analysis of HXK gene in sweet potato.Journal of Sichuan University(Natural Science Edition),2014,51(2):378-384.(in Chinese)
    [25]KARVE A,RAUH B L,XIA X.Expression and evolutionary features of the hexokinase gene family in Arabidopsis.Planta,2008,228(3):411-425.
    [26]HERICOURT F,CHEFDOR F,DJEGHDIR I,LARCHER M,LAFONTAINE F,COURDAVAULT V,AUGUIN D,COSTE F,DEPIERREUX C,TANIGAWA M,MAEDA T,GLEVAREC G,CARPIN S.Functional divergence of poplar histidine-aspartate kinase hk1 paralogs in response to osmotic stress.International Journal of Molecular Sciences,2016,17(12):2061.
    [27]WOLANIN P M,THOMASON P A,STOCK J B.Histidine protein kinases:Key signal transducers outside the animal kingdom.Genome Biology,2002,3(10):reviews3013.1.
    [28]HUPFELD T,CHAPUY B,SCHRADER V,BEUTLER M,VELTKAMP C,KOCH R,CAMERON S,AUNG T,HAASE D,LAROSEE P,TRUEMPER L,WULF G G.Tyrosinekinase inhibition facilitates cooperation of transcription factor SALL4 and ABCtransporter A3 towards intrinsic CML cell drug resistance.British Journal of Haematology,2013,161(2):204.
    [29]MAO J,LI W F,MI B Q,DAWUDA M M,CALDERON-URREA A,MA Z H,ZHANG Y M,CHEN B H.Different exogenous sugars affect the hormone signal pathway and sugar metabolism in‘Red Globe’(Vitis vinifera L.)plantlets grown in vitro as shown by transcriptomic analysis.Planta,2017,246:537-552.
    [30]KIM D,PERTEA G,TRAPENLL C,PIMENTEL H,KELLEYR R,SALZBERG S L.TopHat2:Accurate alignment of transcriptomes in the presence of insertions,deletions and gene fusions.Genome Biology,2013,14(4):R36.
    [31]ANDERS S,HUBER W.Differential expression analysis for sequence count data.Genome Biology,2010,11(10):R106.
    [32]LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative and the 2-ΔΔCT method.Methods,2001,25:402-408.
    [33]ROLLAND F,BAENA-GONZALEZ E,SHEEN J.Sugar sensing and signaling in plants:Conserved and novel mechanisms.Annual Review of Plant Biology,2006,57:675-709.
    [34]FILICHKIN S A,HAMILYON M,DHARMAWARDHANA P D,SINGH S K,SULLIVAN C,BEN-HUR A,REDDY A S N,JAISWALP.Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing,differential intron retention,and isoform ratio switching.Frontiers in Plant Science,2018.doi:10.3389/fpls.2018.00005.
    [35]贾新平,孙晓波,邓衍明,梁丽建,叶晓青.鸟巢蕨转录组高通测序及分析.园艺学报,2014,41(11):2329-2341.JIA X P,SUN X B,DENG Y M,LIANG L J,YE X Q.Sequencing and analysis of the transcriptome of Asplenium nidus.Acta Horticulturae Sinica,2014,41(11):2329-2341.(in Chinese)
    [36]张雪,唐铭浩,陈蒙,李春艳,刘海峰.山葡萄不同着色时期果皮转录组测序分析.果树学报,2017,34(7):781-789.ZHANG X,TANG M H,CHEN M,LI C Y,LIU H F.Sequencing analysis of transcriptome of Vitis amurensis during different periods of coloration.Journal of Fruit Science,2017,34(7):781-789.(in Chinese)
    [37]魏利斌,苗红梅,张海洋.芝麻发育转录组分析.中国农业科学,2012,45(7):1246-1256.WEI L B,MIAO H M,ZHANG H Y.Transcriptomic analysis of sesame development.Scientia Agricultura Sinica,2012,45(7):1246-1256.(in Chinese)
    [38]PROUD C G.Phosphorylation and signal transduction pathways in translational control.Cold Spring Harb Perspect Biology,2018.doi:10.1101/cshperspect.a033050.
    [39]IRWIN D M,TAN H.Evolution of glucose utilization:Glucokinase and glucokinase regulator protein.Molecular Phylogenetics&Evolution,2014,70(1):195-203.
    [40]GUTIERREZNOGUES A,GARCIAHERRERO C M,ORIOLAJ,VINCENT O,NAVAS M A.Functional characterization of MODY2mutations in the nuclear export signal of glucokinase.Biochimica et Biophysica Acta(BBA)-Molecular Bassis of Disease,2018,1864(7):2385-2394.
    [41]KAWAI S,MUKAI T,MORI S,MIKAMI B,MURATA K.Hypothesis:structures,evolution,and ancestor of glucose kinases in the hexokinase family.Journal of Bioscience&Bioengineering,2005,99(4):320-330.
    [42]MOORE B,SHEEN J.Role of the Arabidopsis glucose sensor HXK1in nutrient,light,and hormonal signaling.Science,2003,300(5617):332-336.
    [43]CHO Y H,YOO S D,SHEEN J.Regulatory functions of nuclear hexokinase1 complex in glucose signaling.Cell,2007,127(2):579-589.
    [44]KELLY G,SADE N,DORON-FAIGENBOIM A,LERNER S,SHATIL-COHEN A,YESELSON Y,EGBARIA A,KOTTAPALLI J,SCHAFFER A A,MOSHELION M,GRANOT D.Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.The Plant Journal,2017,91:325-339.
    [45]HU R B,ZHU Y F,SHEN G X,ZHANG H.Overexpression of the PP2A-C5gene confers increased salt tolerance in Arabidopsis thaliana.Plant Signaling&Behavior,2017,12(2):e1276687.
    [46]RAZAVIZADEH R,SHOJAIE B,KOMATSU S.Characterization of PP2A-A3,m RNA expression and growth patterns in Arabidopsis thaliana,under drought stress and abscisic acid.Physiology&Molecular Biology of Plants,2018(1):1-13.
    [47]LIU L L,REN H M,CHEN L Q,WANG Y,WU W H.A protein kinase,calcineurin B-like protein-interacting protein Kinase9,interacts with calcium sensor calcineurin B-like Protein3 and regulates potassium homeostasis under low-potassium stress in Arabidopsis.Plant Physiology,2013,161(1):266-277.
    [48]COLCOMBET J,HIRT H.Arabidopsis MAPKs:A complex signalling network involved in multiple biological processes.Biochemical Journal,2008,413(2):217-226.
    [49]ANDREASSON E,ELLIS B.Convergence and specificity in the Arabidopsis MAPK nexus.Trends in Plant Science,2010,15(2):106-113.
    [50]SINGHA H S,CHAKRABORTY S,DEKA H.Stress induced MAPKgenes show distinct pattern of codon usage in Arabidopsis thaliana,Glycine max and Oryza sativa.Bioinformation,2014,10(7):436-442.
    [51]WOLANIN P M,THOMASON P A,STOCE J B.Histidine protein kinases:Key signal transducers outside the animal kingdom.Genome Biology,2002,3(10):reviews3013.1.
    [52]LIM W A,PAWSON T.Phosphotyrosine signaling:Evolving a new cellular communication system.Cell,2010,142:661-667.
    [53]LIN W W,LI B,LU D P,CHEN S X,ZHU N,HE P,SHAN L B.Tyrosine phosphorylation of protein kinase complex BAK1/BIK1mediates Arabidopsis innate immunity.Proceedings of the National Academy of Sciences of the United States of America,2014,111(9):3632-3637.
    [54]REDDY M M,RAJASEKHARAN R.Serine/threonine/tyrosine protein kinase from Arabidopsis thaliana is dependent on serine residues for its activity.Archives of Biochemistry&Biophysics,2007,460(1):122-128.