不同溶解氧浓度下硝化工艺中微生物种群结构对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of the Microbial Community Structure in Nitrifying Processes Operating with Different Dissolved Oxygen Concentrations
  • 作者:刘文如 ; 顾广发 ; 宋小康 ; 杨殿海
  • 英文作者:LIU Wen-ru;GU Guang-fa;SONG Xiao-kang;YANG Dian-hai;National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology,Suzhou University of Science and Technology;Safety and Environmental Protection Office of Xushuguan Town;Suzhou Jingyan Environmental Protection Technology Co.,Ltd.;School of Environmental Science and Engineering,Tongji University;
  • 关键词:活性污泥 ; 硝化 ; 溶解氧 ; 微生物种群 ; 高通量测序
  • 英文关键词:activated sludge;;nitrification;;dissolved oxygen;;microbial community;;high-throughput sequencing
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:苏州科技大学城市生活污水资源化利用技术国家地方联合工程实验室;苏州高新区浒墅关镇安全环保办公室;苏州净研环保科技有限公司;同济大学环境科学与工程学院;
  • 出版日期:2019-03-26 15:25
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51808367);; 江苏省高等学校自然科学研究项目(18KJD610003);; 城市生活污水资源化利用技术国家地方联合工程实验室开放课题项目(2018KF05)
  • 语种:中文;
  • 页:HJKZ201908037
  • 页数:7
  • CN:08
  • ISSN:11-1895/X
  • 分类号:312-318
摘要
运用高通量测序技术分析了不同溶解氧(DO)浓度下硝化工艺微生物种群结构.结果表明,低氧硝化反应器(R_L,DO浓度为0. 2~0. 3 mg·L~(-1))比高氧硝化反应器[R_H,DO=(2. 0±0. 1) mg·L~(-1)]具有更高的种群多样性,而R_H中微生物种群功能组织性更高.尽管R_H和R_L共有物种信息达85%以上,但DO浓度的不同造成了单个物种在相对丰度上的显著差异.Proteobacteria门(80. 7%)在R_H中被高度富集,其中Nitrosomonas菌属相对丰度达到65. 1%;而在R_L中则以Proteobacteria(43. 8%)、Firmicutes (20. 0%)以及Bacteroidetes (15. 1%)为共同主导者,同时R_L中含有大量Lactococcus、Anaerolineaceae以及Rhodocyclaceae等可在厌氧或缺氧条件下进行水解发酵作用的菌属. Nitrosomonas oligotropha和Nitrosomonas europaea分别为RH和RL中优势氨氧化细菌,而亚硝酸盐氧化细菌均以Nitrospira defluvii为主导.反应器中NH_4~+-N和NO_2~--N浓度(而非DO浓度)是上述硝化菌群被选择性富集的关键因素.
        High-throughput sequencing was applied to analyze the microbial community structure of nitrifying reactors operated with different dissolved oxygen( DO) levels. Results showed that the nitrifying reactor( R_L) run with low DO( 0. 2-0. 3 mg·L~(-1)) exhibited greater microbial richness and diversity than the reactor run under the high DO condition [R_H,DO =( 2. 0 ± 0. 1) mg·L~(-1)]. In contrast,the microbial community in R_H was more highly functionally organized than that in R_L. Although the communities in R_H and R_L shared over 85% of the total sampled genetic information,the relative abundance of some individual species varied between the different DO conditions. Members of the Proteobacteria phylum,which accounted for 80. 7% of the total microbes in R_H,were highly enriched,and the relative abundance of Nitrosomonas reached to 65. 1%. However,the microbial community in R_L was dominated by Proteobacteria( 43. 8%),Firmicutes( 20. 0%),and Bacteroidetes( 15. 1%). In addition,a large fraction of bacteria possessing hydrolyzation and fermentation functions under anaerobic or anoxic conditions were also present in R_L including Lactococcus,Anaerolineaceae,and Rhodocyclaceae. As known ammonium-oxidizing bacteria,Nitrosomonas oligotropha and Nitrosomonas europaea were enriched in the R_H and R_L,respectively,while Nitrospira defluvii,being a nitrite-oxidizing bacteria,dominated both reactors.Rather than DO,ammonia and nitrite availability should be key factors in the selective enrichment of these nitrifiers.
引文
[1]Mc Carty P L,Bae J,Kim J.Domestic wastewater treatment as a net energy producer-Can this be achieved[J].Environmental Science&Technology,2011,45(17):7100-7106.
    [2]张自杰,林荣忱,金儒霖.排水工程下册[M].(第四版).北京:中国建筑工业出版社,2000.
    [3]Arnaldos M,Pagilla K R.Implementation of a demand-side approach to reduce aeration requirements of activated sludge systems:directed acclimation of biomass and its effect at the process level[J].Water Research,2014,62:147-155.
    [4]Metcalf&Eddy.Wastewater engineering:treatment and reuse(4th ed.)[M].Boston:Mc Graw-Hill,2003.
    [5]Abbassi B,Dullstein S,Rbiger N.Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs;Experimental and theoretical approach[J].Water Research,2000,34(1):139-146.
    [6]Liu G Q,Wang J M.Long-term low do enriches and shifts nitrifier community in activated sludge[J].Environmental Science&Technology,2013,47(10):5109-5117.
    [7]Fitzgerald C M,Camejo P,Oshlag J Z,et al.Ammoniaoxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen[J].Water Research,2015,70:38-51.
    [8]Park H D,Noguera D R.Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge[J].Water Research,2004,38(14-15):3275-3286.
    [9]Arnaldos M,Kunkel S A,Stark B C,et al.Characterization of heme protein expressed by ammonia-oxidizing bacteria under low dissolved oxygen conditions[J].Applied Microbiology and Biotechnology,2014,98(7):3231-3239.
    [10]Bellucci M,Ofiteru I D,Graham D W,et al.Low-dissolvedoxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields[J].Applied and Environmental Microbiology,2011,77(21):7787-7796.
    [11]Wagner M,Loy A.Bacterial community composition and function in sewage treatment systems[J].Current Opinion in Biotechnology,2002,13(3):218-227.
    [12]Ju F,Zhang T.Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant[J].The ISME Journal,2015,9(3):683-695.
    [13]Girvan M S,Campbell C D,Killham K,et al.Bacterial diversity promotes community stability and functional resilience after perturbation[J].Environmental Microbiology,2005,7(3):301-313.
    [14]Briones A,Raskin L.Diversity and dynamics of microbial communities in engineered environments and their implications for process stability[J].Current Opinion in Biotechnology,2003,14(3):270-276.
    [15]Wittebolle L,Marzorati M,Clement L,et al.Initial community evenness favours functionality under selective stress[J].Nature,2009,458(7238):623-626.
    [16]van de Graaf A A,de Bruijn P,Robertson L A,et al.Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor[J].Microbiology,1996,142(8):2187-2196.
    [17]国家环境保护总局.水和废水监测分析方法[M].(第四版).北京:中国环境科学出版社,2002.
    [18]Liu W R,Yang D H,Chen W J,et al.High-throughput sequencing-based microbial characterization of size fractionated biomass in an anoxic anammox reactor for low-strength wastewater at low temperatures[J].Bioresource Technology,2017,231:45-52.
    [19]Manser R,Gujer W,Siegrist H.Consequences of mass transfer effects on the kinetics of nitrifiers[J].Water Research,2005,39(19):4633-4642.
    [20]Arnaldos M,Amerlinck Y,Rehman U,et al.From the affinity constant to the half-saturation index:understanding conventional modeling concepts in novel wastewater treatment processes[J].Water Research,2015,70:458-470.
    [21]王中玮,彭永臻,王淑莹,等.不同运行方式下低溶解氧污泥微膨胀的可行性研究[J].环境科学,2011,32(8):2347-2352.Wang Z W,Peng Y Z,Wang S Y,et al.Feasibility study for limited filamentous bulking under low dissolved oxygen at different operation regimes[J].Environmental Science,2011,32(8):2347-2352.
    [22]Ma J X,Wang Z W,Yang Y,et al.Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing[J].Water Research,2013,47(2):859-869.
    [23]Gao D W,Fu Y,Tao Y,et al.Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen concentrations[J].Bioresource Technology,2011,102(10):5626-5633.
    [24]Marzorati M,Wittebolle L,Boon N,et al.How to get more out of molecular fingerprints:practical tools for microbial ecology[J].Environmental Microbiology,2008,10(6):1571-1581.
    [25]Dytczak M A,Londry K L,Oleszkiewicz J A.Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates[J].Water Research,2008,42(8-9):2320-2328.
    [26]Bollmann A,Br-Gilissen M J,Laanbroek H J.Growth at low ammonium concentrations and starvation response as potential factors involved in niche differentiation among ammonia-oxidizing bacteria[J].Applied and Environmental Microbiology,2002,68(10):4751-4757.
    [27]Bollmann A,Laanbroek H J.Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations[J].FEMS Microbiology Ecology,2001,37(3):211-221.
    [28]Nowka B,Daims H,Spieck E.Comparison of oxidation kinetics of nitrite-oxidizing bacteria:nitrite availability as a key factor in niche differentiation[J].Applied and Environmental Microbiology,2015,81(2):745-753.
    [29]Park M R,Park H,Chandran K.Molecular and kinetic characterization of Planktonic nitrospira spp.selectively enriched from activated sludge[J].Environmental Science&Technology,2017,51(5):2720-2728.
    [30]Spieck E,Hartwig C,Mc Cormack I,et al.Selective enrichment and molecular characterization of a previously uncultured Nitrospira-like bacterium from activated sludge[J].Environmental Microbiology,2006,8(3):405-415.
    [31]Lücker S,Wagner M,Maixner F,et al.A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(30):13479-13484.