耦合太阳能集热的MVR蒸发结晶系统性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance Analysis of a Solar-Assisted MVR Evaporative Crystalization System
  • 作者:田雨 ; 王汉治 ; 李帅旗 ; 何世辉 ; 宋文吉 ; 冯自平
  • 英文作者:TIAN Yu;WANG Han-zhi;LI Shuai-qi;HE Shi-hui;SONG Wen-ji;FENG Zi-ping;Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences;CAS Key Laboratory of Renewable Energy;Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development;University of Chinese Academy of Sciences;
  • 关键词:太阳能集热系统 ; MVR ; 高浓度含盐废水 ; 蒸发结晶 ; 浓缩倍率
  • 英文关键词:solar thermal system;;MVR;;high-salinity wastewater;;evaporative crystallization;;concentration ratio
  • 中文刊名:XNYJ
  • 英文刊名:Advances in New and Renewable Energy
  • 机构:中国科学院广州能源研究所;中国科学院可再生能源重点实验室;广东省新能源和可再生能源研究开发与应用重点实验室;中国科学院大学;
  • 出版日期:2019-06-30 09:26
  • 出版单位:新能源进展
  • 年:2019
  • 期:v.7
  • 基金:广东省科技计划项目(2014B050505014);; 中国科学院可再生能源重点实验室基金项目(y807j11001)
  • 语种:中文;
  • 页:XNYJ201903008
  • 页数:5
  • CN:03
  • ISSN:44-1698/TK
  • 分类号:62-66
摘要
针对高浓度含盐废水蒸发结晶过程中机械式蒸汽再压缩(mechanical vapor recompression, MVR)系统能效显著降低等问题,提出耦合太阳能集热的MVR蒸发结晶系统,并基于数值模型对系统关键运行参数进行了仿真分析。结果表明:针对质量浓度为2%的NaCl废水,耦合太阳能集热的MVR蒸发结晶系统压缩机耗功显著降低,系统性能系数(coefficient of performance, COP)达到24.96;随蒸发器浓缩倍率由4升高至12,压缩机耗功增加71.5%,集热面积减少72.9%;低压闪蒸有利于降低系统温度并提高物料处理量,但压缩机耗功随之增大。
        To improve the thermal efficiency of the mechanical vapor recompression(MVR) system in high-salinity wastewater evaporative crystallization process, a novel solar-assisted MVR system was proposed. Based on the numerical model, some key operation parameters were analyzed. Results showed that the proposed system required lower compression work, and as the NaCl mass concentration was lower than 2%, the coefficient of performance(COP) reached24.96. As the concentration ratio of the evaporator increased from 4 to 12, the compression work increased by 71.5% and the collector area decreased by 72.9%. Lower flashing pressure was beneficial to reduce the system temperature and increase processing capacity, while the compression work increased.
引文
[1]梁林.处理高浓度含盐废水的机械蒸汽再压缩系统设计及性能研究[D].南京:南京航空航天大学,2013.
    [2]顾承真,闵兆升,洪厚胜.机械蒸汽再压缩蒸发系统的性能分析[J].化工进展,2014,33(1):30-35.DOI:10.3969/j.issn.1000-6613.2014.01.006.
    [3]王汉治,李帅旗,黄冲,等.喷气增焓型单级MVR蒸发结晶系统性能分析[J].化工进展,2018,37(9):3312-3319.DOI:10.16085/j.issn.1000-6613.2017-2497.
    [4]ZHOU Y S,SHI C J,DONG G Q.Analysis of a mechanical vapor recompression wastewater distillation system[J].Desalination,2014,353:91-97.DOI:10.1016/j.desal.2014.09.013.
    [5]LIANG L,HAN D,MA R,et al.Treatment of high-concentration wastewater using double-effect mechanical vapor recompression[J].Desalination,2013,314:139-146.DOI:10.1016/j.desal.2013.01.016.
    [6]刘燕,裴程林,王建达,等.高沸点升溶液蒸发系统的设计与分析[J].过程工程学报,2017,17(4):859-865.DOI:10.12034/j.issn.1009-606X.216329.
    [7]HAN D,HE W F,YUE C,et al.Study on desalination of zero-emission system based on mechanical vapor compression[J].Applied energy,2017,185:1490-1496.DOI:10.1016/j.apenergy.2015.12.061.
    [8]郑智颖,李凤臣,李倩,等.海水淡化技术应用研究及发展现状[J].科学通报,2016,61(21):2344-2370.
    [9]KIM D H.A review of desalting process techniques and economic analysis of the recovery of salts from retentates[J].Desalination,2011,270(1/3):1-8.DOI:10.1016/j.desal.2010.12.041.
    [10]FARAHBOD F,MOWLA D,NASR M R J,et al.Experimental study of forced circulation evaporator in zero discharge desalination process[J].Desalination,2012,285:352-358.DOI:10.1016/j.desal.2011.10.026.
    [11]高磊,张凯,董冰,等.螺杆水蒸气压缩机的MVR系统在碱回收中的应用[J].化工进展,2014,33(11):3112-3117.DOI:10.3969/j.issn.1000-6613.2014.11.046.
    [12]王力威,庄景发,杨鲁伟,等.单螺杆水蒸汽压缩机驱动的MVR系统性能实验研究[J].中国科学院大学学报,2015,32(1):38-45.DOI:10.7523/j.issn.2095-6134.2015.01.007.
    [13]IBARRA-BAHENA J,DEHESA-CARRASCO U,MONTIEL-GONZáLEZ M,et al.Feasibility analysis of a hot water solar system coupled to an absorption heat transformer[J].Applied thermal engineering,2017,114:1176-1185.DOI:10.1016/j.applthermaleng.2016.05.140.
    [14]WANG H Z,LI S Q,HUANG C,et al.Performance analysis of a mechanical vapor recompression zero-emission system with water-injected compressor[J].Energy procedia,2018,152:863-868.DOI:10.1016/j.egypro.2018.09.191.
    [15]KLEIN S,NELLIS G.Thermodynamics[M].New York:Cambridge University Press,2012.
    [16]FASQUELLE T,FALCOZ Q,NEVEU P,et al.Numerical simulation of a 50 MWe parabolic trough power plant integrating a thermocline storage tank[J].Energy conversion and management,2018,172:9-20.DOI:10.1016/j.enconman.2018.07.006.