线性化物理过程对GRAPES 4DVAR同化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of linearized physical processes on the GRAPES 4DVAR
  • 作者:刘永柱 ; 龚建东 ; 张林 ; 陈起英
  • 英文作者:LIU Yongzhu;GONG JiANDong;ZHANG Lin;CHEN Qiying;Numerical Weather Prediction Center of CMA,National Meteorological Center;
  • 关键词:线性化物理过程 ; 切线性模式 ; GRAPES模式 ; 四维变分同化
  • 英文关键词:Linearized physical processes;;Tangent linear model;;GRAPES model;;Four-dimensional variational assimilation
  • 中文刊名:QXXB
  • 英文刊名:Acta Meteorologica Sinica
  • 机构:中国气象局数值预报中心/国家气象中心;
  • 出版日期:2019-04-15
  • 出版单位:气象学报
  • 年:2019
  • 期:v.77
  • 基金:公益性行业(气象)科研专项(GYHY201506003);; 重大自然灾害监测预警与防范(2018YFC1506705);; 中国气象局数值预报中心GRAPES发展专项(GRAPES-FZZX-2018)
  • 语种:中文;
  • 页:QXXB201902003
  • 页数:14
  • CN:02
  • ISSN:11-2006/P
  • 分类号:34-47
摘要
线性化物理过程能够改善四维变分同化中极小化收敛的稳定性和增加极小化过程中对大气物理过程和动力更加精确的描述,它是四维变分同化中非常重要的一部分。通过在GRAPES全球模式中研究线性化物理过程,尤其是两个湿线性化物理过程,改善切线性模式预报精度,来提高GRAPES全球四维变分同化的分析和预报效果。线性化物理过程的开发首先需要简化原非线性化物理过程中的强非线性项,然后对线性化物理过程进行规约化,以抑制切线性扰动的异常增长。目前GRAEPS全球模式中的线性化物理过程主要包括次网格尺度地形参数化、垂直扩散、积云深对流和大尺度凝结。线性化物理过程预报精度的检验方法是通过选择合适大小的初始扰动(同化分析增量),来比较非线性模式和切线性模式中的扰动演化的纬向平均误差。然后以绝热版本的切线性模式为基础,通过冬、夏两个个例试验来分别检验4个线性化物理过程的12 h预报效果。试验结果表明,通过添加次网格地形参数化和垂直扩散两个干线性化物理过程方案,可以有效抑制住绝热版本切线性模式低层扰动的异常增长,大幅度改善切线性模式预报效果。通过添加积云深对流和大尺度凝结两个湿线性化物理过程,可以在热带区域和中、高纬度地区提高切线性模式中湿变量和温度变量的近似精度,提高GRAPES全球四维变分同化的分析和预报效果。
        The linearized physical processes can improve the convergence stability of the four-dimensional variational assimilation(4 DVAR) minimization, and increase the significant description of the atmospheric physical processes and dynamics during the minimization. It is a very important component of the 4 DVAR. In order to improve the analysis and forecast effect of GRAPES global 4 DVAR,a set of linearized physical parameterizations have been developed for the GRAPES global model to improve the accuracy of the tangent linear model(TLM), especially the two moist linearized physical parameterizations. The development of the linearized physical parameterizations requires the simplification of those strong nonlinear terms in the non-linear physical parameterizations and the regulation of the linearized physical parameterizations,and reduces the abnormal growth of the tangent linear perturbation. At present,the following linearized physical processes are described in GRAEPS global model: Subgrid-scale orographic effect, vertical diffusion, deep cumulus convection and large scale condensation. The test method for the TLM accuracy with the linearized physical parameterizations is to compare the zonal mean errors between the perturbation evolution in the nonlinear model including full physics and the perturbation evolution in the TLM including the linearized physical parameterizations. It is shown that for finite size perturbations(analysis increments), the inclusion of physics improves the fit to the non-linear model. Then based on the adiabatic TLM, the effect of these linearized physical processes is examined for summer and winter cases for 12 h forecasts. The experimental results show that by adding two dry linearized physical processes(vertical diffusion and subgrid-scale orographic effects), the abnormal growth near the surface in the adiabatic TLM can be effectively suppressed, and the accuracy of the tangential linear mode can be greatly improved. By adding two moist linearization physics processes, i.e., deep cumulus convection and large-scale condensation, the accuracy of the moisture and temperature increments in the TLM can be improved in the tropics and middle to high latitudes, and thus the analysis and forecast effect of GRAPES global 4 DVAR can be improved.
引文
陈德辉,沈学顺.2006.新一代数值预报系统GRAPES研究进展.应用气象学报,17(6):773-777.Chen D H,Shen X S.2006.Recent progress on GRAPES research and application.J Appl Meteor Sci,17(6):773-777 (in Chinese)
    陈炯,马占山,苏勇.2017.适用于GRAPES模式C-P边界层方案的设计和实现.应用气象学报,28(1):52-61.Boundary layer coupling to Charney-Phillips vertical grid in GRAPES Model.J Appl Meteor Sci,28(1):52-61 (in Chinese)
    龚建东,邱崇践,王强等.1999.区域四维变分资料同化的数值试验.气象学报,57(2):131-142.Gong J D,Qiu C J,Wang Q,et al.1999.The numerical experiment in area four-dimensional variational data assimilation.Acta Meteor Sinica,57(2):131-142 (in Chinese)
    龚建东,刘永柱,张林.2019.面向四维变分资料同化的NSAS积云深对流参数化方案的简化及线性化研究.77:doi:10.11676/qxxb2019.048 (待刊).Gong J D,Liu Y Z,Zhang L.2019.The researches on Simplification and Linearization of NSAS Deep Convection Cumulus Parameterization Scheme for 4DVar.Acta Meteor Sinica,77:doi:10.11676/qxxb2019.048 (in press) (in Chinese)
    刘永柱,沈学顺,李晓莉.2013.基于总能量模的GRAPES全球模式奇异向量扰动研究.气象学报,71(3):517-526.Liu Y Z,Shen X S,Li X L.2013.Researeh on the singular vector perturbation of the GRAPES global model based on the total energy norm.Acta Meteor Sinica,71(3):517-526 (in Chinese)
    刘永柱,张林,金之雁.2017.GRAPES全球切线性和伴随模式的调优.应用气象学报,28(1):62-71.Liu Y Z,Zhang L,Jin Z Y.2017.The optimization of GRAPES global tangent linear model and adjoint model.J Appl Meteor Sci,28(1):62-71 (in Chinese)
    沈学顺,苏勇,胡江林等.2017.GRAPES_GFS全球中期预报系统的研发和业务化.应用气象学报,28(1):1-10.Shen X S,Su Y,Hu J L,et al.2017.Development and operation transformation of GRAPES global middle-range forecast system.J Appl Meteor Sci,8(1):1-10 (in Chinese)
    谭超,刘奇俊,马占山.2013.GRAPES全球模式次网格对流过程对云预报的影响研究.气象学报,71(5):867-878.Tan C,Liu Q J,Ma Z S.2013.Influences of sub-grid convective processes on cloud forecast in the GRAPES global model.Acta Meteor Sinica,71(5):867-878 (in Chinese)
    徐国强,杨学胜,黄丽萍等.2010.GRAPES中地形重力波拖曳物理过程的引进和应用试验.气象学报,68(5):631-639.Xu G Q,Yang X S,Hang L P,et al.2010.Introducing and application testing of the orographic gravity wave drag parameterization physics in the GRAPES.Acta Meteor Sinica,68(5):631-639 (in Chinese)
    杨学胜,沈元芳,徐国强.2009.辐射方案对GRAPES全球模式的影响.大气科学,33(3):593-599.Yang X S,Shen Y F,Xu G Q.2009.The impacts of radiation schemes on the GRAPES global model.Chinese J Atmos Sci,33(3):593-599 (in Chinese)
    张林,朱宗申.2008.GRAPES模式切线性垂直扩散方案的误差分析和改进.应用气象学报,19(2):194-200.Zhang L,Zhu Z S.2008.Estimation of linearized vertical diffusion scheme in GRAPES model.J Appl Meteor Sci,19(2):194-200 (in Chinese)
    张林,朱宗申.2009.GRAPES四维变分同化系统中线性大尺度凝结方案的开发与实验//中国气象学会全国数值预报发展与应用研讨会,北京:气象出版社:75-85.Zhang L,Zhu Z S.2013.Development and test of the linearized large-scale condensation scheme in GRAPES 4DVAR system//National Numerical Forecast Development and Application Seminar of Chinese Meteorological Society.Beijing:China Meteorological Press:75-85 (in Chinese)
    Alpert J C.1988.Sub-grid scale mountain blocking at NCEP//Proceedings of the 20th Conf.WAF/16 Conf.NWP P2.4.Camp Springs,Maryland:NOAA/NWS/NCEP
    Bonavita M,Hólm E,Isaksen L,et al.2016.The evolution of the ECMWF hybrid data assimilation system.Quart J Roy Meteor Soc,142(694):287-303
    Dai Y J,Zeng X B,Dickinson R E,et al.2003.The common land model.Bull Amer Meteor Soc,84(8):1013-1024
    Dee D P,Uppala S M,Simmons A J,et al.2011.The ERA-interim reanalysis:Configuration and performance of the data assimilation system.Quart J Roy Meteor Soc,137(656):553-597
    ECMWF.2017.Part Ⅱ:Data assimilation//IFS Documentation - Cy43r3 Operational Implementation.Shinfield,England:ECMWF
    Errico R M.1997.What is an adjoint model?.Bull Amer Meteor Soc,78(11):2577-2592
    Fillion L,Bélair S.2004.Tangent linear aspects of the Kain-Fritsch moist convective parameterization scheme.Mon Wea Rev,132(10):2477-2494.
    Han J,Pan H L.2006.Sensitivity of hurricane intensity forecast to convective momentum transport parameterization.Mon Wea Rev,134(2):664-674.
    Hong S Y,Pan H L.1996.Nonlocal boundary layer vertical diffusion in a medium-range forecast model.Mon Wea Rev,124(10):2322-2339
    Mahfouf J F.1999.Influence of physical processes on the tangent-linear approximation.Tellus A,51(2):147-166
    Mahfouf J F,Rabier F.2000.The ECMWF operational implementation of four-dimensional variational assimilation.Ⅱ:Experimental results with improved physics.Quart J Roy Meteor Soc,126(564):1171-1190
    Molteni F,Buizza R,Palmer T N,et al.1996.The ECMWF ensemble prediction system:Methodology and validation.Quart J Roy Meteor Soc,122(529):73-119
    Morcrette J J,Barker H W,Cole J N S,et al.2012.Impact of a new radiation package,McRad,in the ECMWF integrated forecasting system.Mon Wea Rev,136(12):4773-4798
    Rabier F,J?rvinen H,Klinker E,et al.2000.The ECMWF operational implementation of four‐dimensional variational assimilation.Ⅰ:Experimental results with simplified physics.Quart J Roy Meteor Soc,126(564):1143-1170
    Tompkins A M,Janisková M.2004.A cloud scheme for data assimilation:Description and initial tests.Quart J Roy Meteor Soc,130(602):2495-2517.
    Verlinde J,Cotton W R.1993.Fitting microphysical observations of nonsteady convective clouds to a numerical model:An application of the adjoint technique of data assimilation to a kinematic model.Mon Wea Rev,121(10):2776-2793
    Xue J S,Zhuang S Y,Zhu G F,et al.2008.Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES.Chinese Sci Bull,53(22):3446-3457
    Zou X.1997.Tangent linear and adjoint of "on-off" processes and their feasibility for use in 4-dimensional variational data assimilation.Tellus A,49(1):3-31