非线性化学动力学发展的新阶段——浓度场方程及浓度场理论
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A new stage in development of nonlinear chemical kinetics——Equation and theory of concentration field
  • 作者:张少军 ; 李松杰 ; 杜江 ; 王成铎
  • 英文作者:ZHANG Shaojun;LI Songjie;DU Jiang;WANG Chengduo;Collaborative Innovation Center of Henan Resource and Materials Industry,Zhengzhou University;School of Chemical Engineering and Energy,Zhengzhou University;School of Materials Science and Engineering,Zhengzhou University;
  • 关键词:非线性动力学 ; 热分析动力学 ; 分形子动力学 ; 浓度场方程 ; 浓度场理论
  • 英文关键词:nonlinear kinetics;;thermal analysis kinetics;;fracton kinetics;;concentration field equation;;concentration field theory
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:郑州大学河南资源与材料技术协同创新中心;郑州大学化工与能源学院;郑州大学材料科学与工程学院;
  • 出版日期:2019-01-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.328
  • 基金:国家重点研发计划(2016YFB0301101)
  • 语种:中文;
  • 页:HGJZ201901003
  • 页数:13
  • CN:01
  • ISSN:11-1954/TQ
  • 分类号:8-20
摘要
在综述各种非线性化学动力学研究发展的基础上,重点介绍了最新研究成果浓度场理论的主要内容。该理论根据质量作用定律和广义相对性原理,构建了非线性复杂反应动力学方程即浓度场方程,并给出了扩散、结晶、吸附、传热及相变等9种基本动力学类型的机理指数,解决了热分析动力学积分不收敛、理论基础不完善等问题,合理解释了分形子动力学所谓"记忆效应"和"分数级反应级数"问题,并在通过数学方程和图线全面、直观、定量表达并解释化学振荡、化学分岔、多重定态等各种非线性化学现象的同时,给出了"三级反应的双解性质,是产生各种非线性化学现象的根本原因"的重要结论。浓度场方程及浓度场理论具有很强的理论研究和实际应用价值。
        On the basis of summarizing the development of various nonlinear chemical kinetics,this paper focuses on the main contents of the latest research results on concentration field theory.Based on the law of mass action and the principle of general relativity,the theory has built the nonlinear complex reaction kinetics equation(i.e.,the concentration field equation)and given the mechanism index of 9 basic kinetics types,such as diffusion,crystallization,adsorption,heat transfer,phase transformation,and so on.The new theory solves the problems of thermal analysis kinetics,such as non-convergence and faultiness of theoretical basis.The so-called"memory effect"and"reaction order of fractional level"of fracton kinetics were explained rationally.By means of mathematical equations and graphs,it can not only quantitatively express and explain various nonlinear chemical phenomena,such as chemical oscillations,chemical bifurcations,and multiple stationary states,but also give the important conclusions that the fundamental reason for producing various nonlinear chemical phenomena is the double-solution properties of three stage reaction.All these illustrate that the concentration field equation and the concentration field theory have important value in theoretical research and practical application.
引文
[1]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨:Ⅱ致密型絮凝体形成操作模式[J].环境科学学报, 2000, 20(4):385-390.WANG X C, NORIHITO T. A study on the morphology anddensity of flocsⅡ. Operation modes for compact floc formation[J]. Acta Scientiae Circumstantiae, 2000, 20(4):385-390.
    [2]严云.荞麦的热分析动力学[J].湖北农业科学, 2015(17):4291-4293.YAN Y. Thermal analysis kinetics of buckwheat[J]. HubeiAgricultural Sciences, 2015(17):4291-4293.
    [3]伊·普里戈金,伊·斯唐热.从混沌到有序[M].上海:上海译文出版社, 1987.PRIGOGINE I, STENGERS I. From chaos to order[M]. Shanghai:Shanghai Translation Publishing House, 1987.
    [4]辛厚文,侯中怀.非线性化学[M]. 2版.合肥:中国科技大学出版社, 2009.XIN H W, HOU Z H. Nonlinear chemistry[M]. 2nd ed. Hefei:Press of University of Science and Technology of China, 2009.
    [5]胡荣祖,高胜利,赵凤起,等.热分析动力学[M]. 2版.北京:科学出版社, 2008.HU R Z, GAO S L, ZHAO F Q, et al. Thermal analysis kinetics[M]. 2nd ed. Beijing:Science Press, 2008.
    [6] BROWN M E, MACIEJEWSKI M, VYAZOVKIN S, et al.Computational aspects of kinetic analysis:Part A:The ICTACkinetics project—data, methods and results[J]. ThermochemicalActa, 2000, 355(1):125-143.
    [7] MACIEJEWSKI M. Computational aspects of kinetic analysis:Part B:The ICTAC Kinetics Project—the decomposition kineticsof calcium carbonate revisited, or some tips on survival in thekinetic minefield[J]. Thermochemical Acta, 2000, 355(1):145-154.
    [8] VYAZOVKIN S. Computational aspects of kinetic analysis:PartC:The ICTAC Kinetics Project—the light at the end of the tunnel[J]. Thermochemical Acta, 2000, 355(1):155-163.
    [9] BURNHAM A K. Computational aspects of kinetic analysis:PartD:The ICTAC kinetics project—multi-thermal-history model-fitting methods and their relation to is conversional methods[J].Thermochemical Acta, 2000, 355(1):165-170.
    [10] RODUIT B. Computational aspects of kinetic analysis:Part E:TheICTAC Kinetics Project—numerical techniques and kinetics ofsolid state processes[J]. Thermochemical Acta, 2000, 355(1):171-180.
    [11]任宁,张建军.热分析动力学数据处理方法的研究进展[J].化学进展, 2006, 18(4):410-416.REN N, ZHANG J J. Progress in datum treatment methods ofthermal analysis kinetics[J]. Progress in Chemistry, 2006, 18(4):410-416.
    [12] FLYNN J H. Thermal analysis kinetics—past, present and future[J]. Thermochemical Acta, 1992, 203:519-526.
    [13] VYAZOVKIN S, CHRISSAFIS K, LORENZO M L D, et al.ICTAC kinetics committee recommendations for collectingexperimental thermal analysis data for kinetic computations[J].Thermochemical Acta, 2014, 590:1-8.
    [14] BURNHAM A K. Obtaining reliable phenomenological chemicalkinetic models for real-world applications[J]. ThermochimicaActa, 2014, 597:1-6.
    [15]张少军.多维时间与运动分形论[M].郑州:郑州大学出版社,2018.ZHANG S J. Multidimensional time and fractal theory of motion[M]. Zhengzhou:Zhengzhou University Press, 2018.
    [16]刘秉正,彭建华.非线性动力学[M]. 2版.北京:高等教育出版社, 2004.LIU B Z, PENG J H. Nonlinear dynamics[M]. 2nd ed. Beijing:Higher Education Press, 2004.
    [17] J.R.维尔特, C.E.威克斯, R.E.威尔逊,等.动量、热量和质量传递原理[M]. 4版.马紫峰,吴卫生,等译.北京:化学工业出版社, 2006.WELTY J R, WICKS C E, WILSON R E, et al. Fundamentals ofMomentum, Heat, and Mass Transfer[M]. 4th ed. MA Zifeng, WUWeisheng, et al. trans. Beijing:Chemical Industry Press, 2006.
    [18]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000.HU G X, CAI X. Materials science foundation[M]. Shanghai:Shanghai Jiaotong University Press, 2000.
    [19] LAGERGREN S. About the theory of so-called adsorption ofsoluble substances[J]. Kungliga Svenska VetenskapsakademiensHandlingar, 1898, 24(4):1-39.
    [20] WEBER W J, MORRIS J C. Kinetics of adsorption on carbon fromsolution[J]. Journal of the Sanitary Engineering Division, 1963, 89(17):31-60.
    [21] BOYD G E, SCHUBERT J, ADAMSON A W, et al. The exchangeadsorption of ions from aqueous solutions by organic zeolites.Ⅱ.Kinetics[J]. Journal of the American Chemical Society, 1947, 69(11):2836-2848.
    [22]杨本洛. Prigogine“最小熵产生原理”的否定性证明[J/OL].中国科技论文在线, 2006-05-26.YANG B L. A negative demonstration on Prigogine’s minimumentropy production principle[J/OL]. Sciencepaper Online, 2006-05-26.
    [23]杨本洛.定态导热“最小熵产生原理”的重新构造[J/OL].中国科技论文在线, 2006-05-30.YANG B L. Reconstruction of‘minimum entropy productionprinciple’of stationary conducting[J/OL]. Sciencepaper Online,2006-05-30.
    [24]普利高津.从存在到演化[M].曾庆宏,严士健,等译.北京:北京大学出版社, 2007.PRIGOGINE I. From being to becoming[M]. ZENG Qinghong,YAN Shijian,et al. trans. Beijing:Peking University Press, 2007.