1920年海原8.5级地震高烈度区滑坡编录与分布规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:INVENTORY AND SPATIAL DISTRIBUTION OF LANDSLIDES IN Ⅸ-Ⅺ HIGH INTENSITY AREAS OF 1920 HAIYUAN(CHINA) M8.5 EARTHQUAKE
  • 作者:许冲 ; 田颖颖 ; 马思远 ; 徐锡伟 ; 周本刚 ; 吴熙彦 ; 庄建琦 ; 高玉欣 ; 吴玮莹 ; 黄学强
  • 英文作者:XU Chong;TIAN Yingying;MA Siyuan;XU Xiwei;ZHOU Bengang;WU Xiyan;ZHUANG Jianqi;GAO Yuxin;WU Weiying;HUANG Xueqiang;Key Laboratory of Active Tectonics and Volcano,Institute of Geology,China Earthquake Administration;Institute of Crustal Dynamics,China Earthquake Administration;College of Geological Engineering and Surveying of Chang'an University;School of Engineering and Technology,China University of Geosciences(Beijing);Institute of Earthquake Forecasting,China Earthquake Administration;
  • 关键词:海原地震 ; 滑坡 ; 谷歌地球 ; 地震烈度 ; 分布规律
  • 英文关键词:Haiyuan earthquake;;Landslide;;Google Earth;;Seismic intensity;;Spatial distribution
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:中国地震局地质研究所活动构造与火山重点实验室;中国地震局地壳应力研究所;长安大学地质工程与测绘学院;中国地质大学(北京)工程技术学院;中国地震局地震预测研究所;
  • 出版日期:2018-10-15
  • 出版单位:工程地质学报
  • 年:2018
  • 期:v.26;No.127
  • 基金:“十三五”国家重点研发计划项目(2017YFC1501001);; 国家自然科学基金(41661144037)资助
  • 语种:中文;
  • 页:GCDZ201805009
  • 页数:8
  • CN:05
  • ISSN:11-3249/P
  • 分类号:79-86
摘要
发生在黄土高原的1920年12月16日的海原MS8.5级大地震触发了大量的滑坡,这些滑坡直接造成了大量的人员伤亡。近年来,出现了一些关于本次地震触发滑坡的专题研究,然而,这些研究多是基于局部震区或者个别单体滑坡进行,极少有关于该地震触发滑坡详细全面的成果出现。这种情况已经成为了深入理解海原地震触发滑坡的规模与程度、发育规律等的障碍。本研究拟基于谷歌地球平台,采用人工目视解译方法,以海原地震高烈度区(Ⅸ~Ⅺ)为研究区,开展地震滑坡解译工作,并分析这些滑坡的分布规律与影响因子之间的关系。结果表明本次地震在Ⅸ~Ⅺ度区内触发了至少5384处滑坡,滑坡总面积为218.78 km2。滑坡密度最高的区域为Ⅸ烈度圈的北西部分。通过分析这些滑坡与地形、地震、地质等因子的关系发现,高程1700~2000 m为滑坡的高发与高易发区间;大多数滑坡集中发育在坡度15°~25°范围内,滑坡密度随着坡度的增加而显著增加;坡位越低,也就是距离河流越近,滑坡密度越大;新生代地层、尤其是第四系黄土覆盖地区是海原地震滑坡发生的主要区域,也是高易发区域。本文为探索黄土地区地震滑坡发育规律、减轻黄土地震滑坡灾害等提供了科学参考。
        The Haiyuan MS8.5 earthquake on December 16,1920,occurred at the loess plateau.It triggered a large number of landslides.The landslides directly caused a large number of casualties.In recent years,there havebeen some special studies on landslides triggered by the Haiyuan earthquake.However,most of these studies have limitations on their local study areas or individual landslides.There are few detailed and comprehensive results about landslides triggered by the earthquake.This situation has become an obstacle to understand the overall incidence and severity,spatial distribution law of the Haiyuan earthquake-triggered landslides.In this study,we carry out the visual interpretation of landslides in the high seismic intensity(Ⅸ-Ⅺ) areas of Haiyuan earthquake based on Google Earth platform,as well as analyze the relationship between landslides and several influence factors.Results show that the earthquake triggered at least 5384 landslides,which have a total landslide area of 218.78 km2.The highest density of landslides is located at the NW part of seismic intensity Ⅸ circle.Through analyzing the relationship between these landslides and topography,earthquake and geological factors,it is found that elevation 1700 ~ 2000 m registers the largest landslide number and density.Most landslides are concentrated in the slope angle range of 15° ~ 25° whereas the number density of landslides increases with the increase of slope angle.The lower the slope position is,i.e.,the closer to rivers,the greater the density of the landslides.The areas with Cenozoic strata underlying,especially the Quaternary loess covered areas,register most of the landslides and the high density of landslides.This study provides a scientific reference for exploring the law of the occurrence of seismic landslides and reduction and mitigation of earthquake-triggered landslides in loess area.
引文
Boardman J.2016.The value of Google EarthTMfor erosion mapping[J].Catena,143:123-127.
    Close U,Mc Cormick E.1922.Where the mountains walked[J].National Geographic Magazine,41(5):445-464.
    Chen X L,Ye H.2003.Application of GIS for earthquake landslide research[J].Earthquake Research in Shanxi,(2):17-19.
    Deng L S,Fan W.2013.Deformation breakage characteristics and development mechanism of loess landslide triggered by Haiyuan M8.5 earthquake in Ningxia[J].Journal of Catastrophology,28(3):30-37.
    Gorum T,van Westen C J,Korup O,et al.2013.Complex rupture mechanism and topography control symmetry of mass-wasting pattern,2010 Haiti earthquake[J].Geomorphology,184:127-138.
    Jenness J,Brost B,Beier P.2013.Land facet corridor designer:Topographic position index tools[EB/OL].www.jennessent.com.
    Li T.1990.Landslide management in the mountain areas of China[R].Kathmandu,Nepal:International Centre for Integrated Mountain Development Occasional.
    Li W L,Huang R Q,Pei X J,et al.2013.Historical co-seismic landslide inventory with Google Earth:A case study of 1920 Haiyuan Earthquake,China[M].Global View of Engineering Geology and the Environment:179-184.
    Lisle R J.2006.Google Earth:a new geological resource[J].Geology Today,22(1):29-32.
    Liu K,Ding H,Tang G A,et al.2018.Large-scale mapping of gullyaffected areas:An approach integrating Google Earth images and terrain skeleton information[J].Geomorphology,314:13-26.
    Lu Y X.2007.Landform characteristics of seismic landslides in Xiji county,Ningxia province,and discussion on the countermeasures of landslide exploration and disaster mitigation[J].Northwestern Seismological Journal,29(1):79-83.
    Minasny B,Padarian J,Malone B.2015.Digital soil mapping in the cloud using Google Earth Engine[J].Computers&Geosciences,83:80-88.
    Padarian J,Minasny B,Malone B,et al.2015.Digital soil mapping in the clound using Google Earth Engine[J].Computers&Geosciences,83:80-88.
    Pei X J,Zhang X C,Guo B,et al.2017.Experimental case study of seismically induced loess liquefaction and landslide[J].Engineering Geology,223:23-30.
    Sato H P,Harp E L.2009.Interpretation of earthquake-induced landslides triggered by the 12 May 2008,M7.9 Wenchuan earthquake in the Beichuan area,Sichuan Province,China using satellite imagery and Google Earth[J].Landslides,6(2):153-159.
    Shan P F.1996.Original analysis of the slide hazard-induced landforms in the Xiji region of Ningxia[J].Acta Geographica Sinica,51(6):535-542.
    Shen L L,Xu C,Liu L Y.2016.Interaction among controlling factors for landslides triggered by the 2008 Wenchuan,China MW7.9earthquake[J].Frontiers of Earth Science,10(2):264-273.
    Tian Y Y,Xu C,Xu X W,et al.2016.Detailed inventory mapping and spatial analyses to landslides induced by the 2013 MS6.6 Minxian earthquake of China[J].Journal of Earth Science,27(6):1016-1026.
    Wang G H,Zhang D X,Furuya G,et al.2006.On the mechanism for a long-travel loess landslide triggered by the 1920 Haiyuan Earthquake in China[M].Disaster Mitigation of Debris Flows,Slope Failures and Landslides:3-12.
    Wang W N,Nakamura H,Tsuchiya S,et al.2002.Distributions of landslides triggered by the Chi-chi Earthquake in Central Taiwan on September 21,1999[J].Landslides-Journal of the Japan Landslide Society,38(4):318-326.
    Weiss A D.2001.Topographic position and landforms analysis[EB/OL].http:∥www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf.
    Xu C,Shyu J B H,Xu X W.2014a.Landslides triggered by the 12January 2010 Port-au-Prince,Haiti,MW=7.0 earthquake:visual interpretation,inventory compiling,and spatial distribution statistical analysis[J].Natural Hazards and Earth System Sciences,14(7):1789-1818.
    Xu C,Xu X,Yao X,et al.2014b.Three(nearly)complete inventories of landslides triggered by the May 12,2008 Wenchuan MW7.9earthquake of China and their spatial distribution statistical analysis[J].Landslides,11(3):441-461.
    Xu C,Xu X W,Shyu J B H,et al.2014c.Landslides triggered by the 22July 2013 Minxian-Zhangxian,China,MW5.9 earthquake:Inventory compiling and spatial distribution analysis[J].Journal of Asian Earth Sciences,92:125-142.
    Xu C,Xu X,Shyu J B H.2015.Database and spatial distribution of landslides triggered by the Lushan,China MW6.6 earthquake of 20April 2013[J].Geomorphology,248:77-92.
    Xu C,Xu X,Yu G.2013.Landslides triggered by slipping-faultgenerated earthquake on a plateau:An example of the 14 April2010,MS7.1,Yushu,China earthquake[J].Landslides,10(4):421-431.
    Xu C.2015.Preparation of earthquake-triggered landslide inventory maps using remote sensing and GIS technologies:Principles and case studies[J].Geoscience Frontiers,6(6):825-836.
    Xu C.2014.Overview of earthquake-triggered landslides across China mainland before the 2008 Wenchuan MW7.9 earthquake[J].Science&Technology Review,32(16):63-77.
    Yu L,Gong P.2012.Google Earth as a virtual globe tool for Earth science applications at the global scale:progress and perspectives[J].International Journal of Remote Sensing,33(12):3966-3986.
    Yuan L X.2005.The mechanism of loess landslide caused by earthquake in Haiyuan of Ningxia[D].Xi'an:Northwest University.
    Yuan L X.2006.Forming mechanism of the loess landslides in Xiji of Ningxia with low-angle,high speed and far-distance[J].Journal of Disaster Prevention and Mitigation Engineering,26(2):219-223.
    Zhang D X,Wang G H.2007.Study of the 1920 Haiyuan earthquakeinduced landslides in loess(China)[J].Engineering Geology,94(1):76-88.
    Zhuang J Q,Peng J B,Xu C,et al.2018.Distribution and characteristics of loess landslides triggered by the 1920 Haiyuan Earthquake,Northwest of China[J].Geomorphology,314:1-12.
    Zou J C,Shao S M.1996.Characteristics of Haiyuan earthquake landslide and its distribution[J].Inland Earthquake,10(1):1-6.
    陈丙午.1992.地震滑坡灾害的特点与减灾对策[C]//中国地震学会第4次学术大会论文摘要集.北京:中国地震学会.
    陈晓利,叶洪.2003.利用GIS进行地震滑坡分析[J].山西地震(2):17-19.
    邓龙胜,范文.2013.宁夏海原8.5级地震诱发黄土滑坡的变形破坏特征及发育机理[J].灾害学,28(3):30-37.
    国家地震局地质研究所,宁夏回族自治区地震局.1990.海原活动断裂带[M].北京:地震出版社.
    李原.1994.地震洪水的次生灾害:滑坡和崩坍[J].环境,(12):30.
    卢育霞.2007.宁夏西吉县境地震滑坡的地貌特征及其减灾开发对策探讨[J].西北地震学报,29(1):79-83.
    单鹏飞.1996.宁夏西吉地区滑坡灾害地貌的成因分析[J].地理学报,51(6):535-542.
    徐锡伟,韩竹军,杨晓平,等.2016.中国及邻近地区地震构造图[M].北京:地震出版社.
    许冲.2014.2008年汶川地震前的中国大陆地震滑坡研究[J].科技导报,32(16):63-77.
    袁丽侠.2005.宁夏海原地震诱发黄土滑坡的形成机制研究[D].西安:西北大学.
    袁丽侠.2006.宁夏西吉县低角高速远程黄土滑坡及其形成机理分析[J].防灾减灾工程学报,26(2):219-223.
    邹谨敞,邵顺妹.1996.海原地震滑坡及其分布特征探讨[J].内陆地震,10(1):1-6.