深冷处理温度对锡锑/碳纳米纤维负极材料锂电性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of deep cryogenic treatment temperature on lithium electrical properties of SnSb/C nanofiber anode material
  • 作者:刘慧洁 ; 夏鑫
  • 英文作者:LIU Huijie;XIA Xin;College of Textiles and Clothing,Xinjiang Unversity;
  • 关键词:SnSb/C纳米纤维负极材料 ; 锂电池 ; 深冷处理 ; 循环性能 ; 电化学性能
  • 英文关键词:SnSb/C nanofiber anode material;;lithium battery;;deep cryogenic treatment;;cycle performance;;electrochemical property
  • 中文刊名:FZXB
  • 英文刊名:Journal of Textile Research
  • 机构:新疆大学纺织与服装学院;
  • 出版日期:2019-04-15
  • 出版单位:纺织学报
  • 年:2019
  • 期:v.40;No.397
  • 基金:国家自然科学基金项目(51763022);; 新疆特色纺织材料开发及应用研究创新团队项目(201705151);; 大学生创新项目(201710755007);; 新疆大学四期教改项目(XJU2015JGY36)
  • 语种:中文;
  • 页:FZXB201904007
  • 页数:6
  • CN:04
  • ISSN:11-5167/TS
  • 分类号:44-49
摘要
为提高锡锑/碳(SnSb/C)纳米纤维作为负极材料的锂电池的循环使用性能,利用深冷处理对SnSb/C纳米纤维进行形貌再造,比较不同深冷温度处理前后纳米纤维的形貌变化,并测试其含碳量和比表面积,通过分析电池的恒流充放电曲线研究深冷处理温度的变化对其电化学性能的影响。结果表明:当深冷处理温度为-100℃时,SnSb/C纳米纤维表面粗糙度增加并出现沟壑;深冷处理加快了聚丙烯腈的预氧化反应速度,使其分解温度提前,含碳量高达75. 4%,比表面积为214. 0 m~2/g;锂电循环过程中,因深冷处理对其形貌结构的影响,电池容量呈持续上升趋势,循环120圈后容量保持率为123. 5%。
        In order to improve the electrochemical performance of SnSb/C nanofibers anodes for lithiumion battery,the deep cryogenic treatment was used to modify the morphology of SnSb/C nanofibers,the influence of cryogenic temperature on the electrochemical performance was studied by comparing the changes of morphology,the specific surface area,the carbon contents and the charge-discharge curve of SnSb/C nanofibers. The results show that when the cryogenic temperature is-100 ℃,SnSb/C nanofiber has a rough surface with gullies. The cryogenic treatment accelerates the preoxidation reaction speed of polyacrylonitrile,so that the decomposition temperature decrease,the carbon content is up to 75. 4% and the specific surface increases to 214. 0 m2/g. Besides,owing to the influence of deep cryogenic treatment on the morphology of SnSb/C nanofibers,the battery capacity sustainably increases during the cycling of the lithium ion battery. After 120 cycles,the capacity retention ratio is still 123. 5%.
引文
[1]陆浩,刘柏男,褚赓,等.锂离子电池负极材料产业化技术进展[J].储能科学与技术,2016,5(2):109-119.LU Hao,LIU Bonan,ZHE Geng,et al. Technology review of anode materials for lithium ion batteries[J].Energy Storage Science and Technology,2016,5(2):109-119.
    [2]黄丽宏,闵忠华,张勤勇.锂离子电池负极材料的研究现状及研究方向[J].西华大学学报(自然科学版),2013,32(6):21-28.HUANG Lihong,MIN Zhonghua,ZHANG Qinyong. The research status of anode materials in lithium ion batteries[J]. Journal of Xihua University(Natural Science Edition),2013,32(6):21-28.
    [3]李娟,汝强,胡社军,等.锂离子电池Sn Sb/C复合负极材料的热碳还原法制备及电化学性能研究[J].物理学报,2014,63(16):426-434.LI Juan,RU Qiang,HU Shejun,et al. Lithium intercalation properties of Sn Sb/C composite in carb onthermal reduction as the anode material for lithium ion battery[J]. Acta Physica Sinica,2014,63(16):426-434.
    [4]桂雪峰,许凯,彭军,等.静电纺丝技术在新能源电池中应用的研究进展[J].广州化学,2016,41(1):59-65.GUI Xuefeng,XU Kai,PENG Jun,et al. Progress of application of electrospinning technique in new energy battery[J]. Guangzhou Chemistry,2016,41(1):59-65.
    [5]龚雪,杨金龙,姜玉林,等.静电纺丝技术在锂离子动力电池中的应用[J].化学进展,2014,26(1):41-47.GONG Xue,YANG Jinlong,JIANG Yulin,et al. The electrostatic spinning technology in the application of lithium ion power battery[J]. Progress in Chemistry,2014,26(1):41-47.
    [6]焦鹏鹤.超细晶YG10硬质合金的制备及深冷处理研究[D].重庆:西南大学,2012:20-21.JIAO Penghe. Study of ultrafine-grain YG10cementedcarbide preparation and deep cryogenic treatment[D]. Chongqing:Xinan University,2012:20-21.
    [7]陈鼎,陈吉华,严红革,等.深冷处理原理及其在工业上的应用[J].兵器材料科学与工程,2003,26(3):68-72.CHEN Ding,CHEN Jihua,YAN Hongge,et al.Mechanism&industrial applications of cryogenic treatment[J]. Ordnance Materials Science and Engineering,2003,26(3):68-72.
    [8]杨叶.合金元素和深冷处理对铸造铝硅合金性能及组织的影响[D].沈阳:沈阳工业大学,2015:26-40.YANG Ye. The effect of alloy element and cryogenic treatment on Al-Si alloy mechanical properties and microstructure[D]. Shenyang:Shenyang University of Technology,2015:26-40.
    [9] XIA Xin,LI Zhiyong,ZHOU Huimin,et al. The effect of deep cryogenic treatment on Sn Sb/C nanofibers anodes for Li-ion battery[J]. Electrochimica Acta,2016,222:765-772.
    [10]瞿梅梅.预氧化碳化工艺对电纺PAN基碳纤维结构性能的影响[D].北京:北京化工大学,2016:6-14.QU Meimei. Effects of stabilization and carbonization on structural and mechnical properties of electrospun PANbased carbon fibers and structures of precursor nanofibers[D]. Beijing:Beijing University of Chemical Technology,2016:6-14.
    [11] CAI J,LI Z,SHEN P K. Porous Sn S nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries[J]. ACS Appl Mater Interfaces,2012,4(8):4093-4098.
    [12] LI H, ZHU G, HUANG X, et al. Synthesis and electrochemical performance of dendrite-like nanosized Sn Sb alloy prepared by co-precipitation in alcohol solution at low temperature[J]. Journal of Materials Chemistry,2000,10(3):693-696.
    [13]李可雨.不同Sn含量无定形Sn/C纳米纤维负极材料的制备及其性能优化[D].北京:北京化工大学,2012:36-42.LI Keyu. Study of the preparation and properperties ofamorphous Sn/C nanofibers anode materials with different Sn content[D]. Beijing:Beijing University of Chemical Technology,2012:36-42.
    [14] PARK C M,JEON K J. Porous structured Sn Sb/C nanocomposites for Li-ion battery anodes[J]. Chemical Communications,2011,47(7):2122-2124.