阴阳离子交换纤维组合深度处理垃圾渗滤液
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ADVANCED TREATMENT OF LANDFILL LEACHATE BY ANION AND CATION EXCHANGE FIBER COMBINATION
  • 作者:苏念英 ; 黎铉海 ; 陈明月 ; 谢元健
  • 英文作者:SU Nian-ying;LI Xuan-hai;CHEN Ming-yue;XIE Yuan-jian;Guilin Productivity Promotion Center;School of Chemistry and Chemical Engineering,Guangxi University;
  • 关键词:离子交换纤维 ; 垃圾渗滤液 ; 深度处理 ; 纤维再生 ; NH_3-N ; COD
  • 英文关键词:ion exchange fiber;;landfill leachate;;advanced treatment;;fiber regeneration;;NH_3-N;;COD
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:桂林市生产力促进中心;广西大学化学化工学院;
  • 出版日期:2019-04-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.250
  • 基金:广西科技计划项目(桂科AB16380279)
  • 语种:中文;
  • 页:HJGC201904014
  • 页数:6
  • CN:04
  • ISSN:11-2097/X
  • 分类号:71-76
摘要
采用阴阳离子交换纤维对垃圾渗滤液进行深度处理,研究了阴阳离子纤维的最佳组合方式、水样流速和纤维装填密度对渗滤液中主要污染物NH_3-N和COD去除效果的影响,以及纤维的再生方式和再生性能。结果表明:离子交换纤维采用"先阴后阳"的组合工艺对垃圾渗滤液的深度处理效果最佳;在水样流速为2. 0 mL/min、装填密度为0. 25 g/cm~3的条件下,动态处理渗滤液后,出水的ρ(NH_3-N)和ρ(COD)分别为18. 9,61. 1 mg/L,均达到GB 16889—2008《生活垃圾填埋场污染控制标准》要求;纤维静态再生后性能优良,可反复使用多次;经10次静态再生、循环使用后,阴离子纤维对COD的吸附能力可恢复至初始值的94%以上,平衡交换量>17. 6 mg/g,阳离子纤维对NH_3-N的吸附能力达到初始能力的93%以上,平衡交换量>13. 6 mg/g。该技术对垃圾渗滤液有较好的处理效果,为垃圾渗滤液的深度处理工程应用提供了参考。
        The effect of the optimal combination of anion and cation exchange fibers,the sample water speed and the packing density of fibers on removal of the main pollutants NH_3-N and COD in leachate,as well as fiber regeneration mode and performance have been studied when anion and cation exchange fibers were used to treat landfill leachate. The results showed that the combination of"anion fiber first and then cation fiber"had the best effect in advanced treatment of landfill leachate.When sample water speed was 2. 0 m L/min and fiber packing density was 0. 25 g/cm~3,after dynamic treatment of the leachate,residual concentrations of NH_3-N and COD were 18. 9,61. 1 mg/L respectively,which met the requirements of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889—2008); the fibers had good performance after static regeneration and could be used repeatedly; after 10 times of static regeneration and recycling,the adsorption capacity of anion fiber to COD was over 94% of its initial adsorption capacity and its equilibrium exchange capacity to COD was over 17. 6 mg/g,while the adsorption capacity for cation fiber to NH_3-N was over 93% and its exchange capacity to NH_3-N was over 13. 6 mg/g. This technology had better treatment effect on landfill leachate and provided a new feasible reference scheme for application of advanced treatment of landfill leachate.
引文
[1]梁斯敏,樊建军.中国城市生活垃圾的现状与管理对策探讨[J].环境工程,2014,32(11):123-126.
    [2]王临清,李枭鸣,朱法华.中国城市生活垃圾处理现状及发展建议[J].环境污染与防治,2015,37(2):106-109.
    [3] Wang M,Liu H,Wang H. Study on the dynamic distribution of organic pollution of landfill leachate in Xuzhou[J]. Environmental Protection&Technology,2017,23(6):25-31.
    [4]张弛,王国红,李晓姣,等.北方城市垃圾渗滤液水量水质变化特征[J].环境工程学报,2015,9(11):5421-5426.
    [5]马月.城市垃圾渗滤液污染控制技术综述[J].环境科学与管理,2014,39(8):87-89.
    [6]吴莉娜,涂楠楠,程继坤,等.垃圾渗滤液水质特性和处理技术研究[J].科学技术与工程,2014,14(31):136-143.
    [7] Renou S,Givaudan J G,Poulain S,et al. Landfill leachate treatment:review and opportunity[J]. Journal of Hazardous Materials,2008,150(3):468-493.
    [8] Melnyk A,Kuklińska K,Wolska L,et al. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste(MSW)landfill[J].Environmental Research,2014,135(308):253-261.
    [9]吕艳菲.垃圾渗滤液处理技术的研究进展[J].能源与环境,2016,(3):88-89.
    [10]张跃升,栾智慧,卫潘明,等.活性炭—H2O2催化氧化处理垃圾渗滤液[J].中国给水排水,2003,19(1):50-51.
    [11]宁平.固体废物处理与处置[M].北京:高等教育出版社,2007.
    [12]李颖.垃圾渗滤液处理技术及工程实例[M].北京:中国环境科学出版社,2008.
    [13]覃芳慧. Fenton-双泥SBR深度处理垃圾渗滤液的试验研究[D].广州:华南理工大学,2011.
    [14]李静.垃圾渗滤液的深度氧化处理试验研究[D].天津:天津大学,2004.
    [15] Guo R,Yin R,Xu Z,et al. The combined treatment process of landfill leachate in China[J]. Environmental Sanitation Engineering,2016,16(2):4-7.
    [16] Wang S M,Cui J T,Li X Y,et al. Effect of microorganism on the degradation and formation of humic acid in landfill leachate[J].Science&Technology View,2016,(7):86-87.
    [17] Aziz H A,Adlan M N,Zahari M S,et al. Removal of ammoniacal nitrogen from municipal solid waste leachate by using activated carbon and limestone[J]. Waste Management&Research:the Journal of the International Solid Wastes&Public Cleansing Association,ISWA,2004,22(5):371-375.
    [18] Wu L,Peng C,Zhang S,et al. Nitrogen removal via nitrite from municipal landfill leachate[J]. Journal of Environmental Sciences(English Edition),2009,21(11):1480-1485.
    [19]罗丹,晏云鹏,全学军.膜分离技术在垃圾渗滤液处理中的应用[J].化工进展,2015,34(8):3133-3141.
    [20] Alzahrani S,Mohammad A W. Challenges and trends in membrane technology implementation for produced water treatment:A review[J]. Journal Of Water Process Engineering,2014,4:107-133.
    [21] Insel G,Dagdar M,Dogruel S,et al. Biodegradation characteristics and size fractionation of landfill leachate for integrated membrane treatment[J]. Journal of Hazardous Materials,2013,260:825-832.
    [22]聂永丰,岳东北,许玉东,等.渗滤液膜处理浓缩液的蒸发处理技术[J].中国城市环境卫生,2006,(4):18-22.
    [23]陈钰,杨顺生,潘科.膜处理技术在城市垃圾渗滤液处理中的应用[J].工业用水与废水,2005,36(1):13-16.
    [24]陈雷,贺磊,吴立群.垃圾渗滤液的处理现状及发展方向[J].环境工程,2016,34(增刊):295-298.
    [25]周绍箕.化学吸附纤维制备、性能及应用研究进展[J].离子交换与吸附,2004,20(3):278-288.
    [26]崔兰,代立波,原思国.离子交换纤维对含铬废水的资源化治理研究[J].离子交换与吸附,2015,31(2):123-130.
    [27]汪朝阳.离子交换纤维的制备、应用与前景[J].化工新型材料,2004,32(6):27-29.
    [28]郭占京,刘雄民,黄宏妙,等.强酸性阳离子交换纤维吸附盐酸育亨宾的动力学研究[J].精细化工,2015,32(10):1126-1131.
    [29]倪慧,李雨.离子交换纤维的研究进展、性能及制备[J].工程科技与产业发展,2016,(14):34-35.
    [30]刘萍.离子交换纤维应用研究进展[J].化学工程与装备,2015,(7):221-223.
    [31]郦宜斌.磁种混凝—磁分离技术预处理垃圾渗滤液的工艺研究[D].南宁:广西大学,2017.
    [32]朱凯,王琳.加载混凝-磁分离水处理技术应用研究[J].环境工程,2016,34(增刊1):190-192.
    [33]吴彦瑜. Fenton氧化和MAP化学沉淀工艺深度处理垃圾渗滤液[D].广州:华南理工大学,2011.