环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of Epoxy Modified Waterborne Polyurethane Sizing Agent on Interfacial Properties of Carbon Fiber/Cyanate Ester Resin Composite
  • 作者:杨洁 ; 吴宁 ; 潘月秀 ; 朱世鹏 ; 焦亚男 ; 陈利
  • 英文作者:YANG Jie;WU Ning;PAN Yuexiu;ZHU Shipeng;JIAO Yanan;CHEN Li;Key Laboratory of Advanced Textile Composites of Ministry of Education, Institute of Textile Composites, School of Textile Science and Engineering,Tianjin Polytechnic University;Aerospace Research Institute of Materials & Processing Technology;
  • 关键词:环氧改性水性聚氨酯上浆剂 ; 二次上浆 ; 氰酸酯树脂 ; 碳纤维复合材料 ; 界面性能
  • 英文关键词:epoxy modified water-based polyurethane sizing agent;;secondary sizing;;cyanate ester resin;;carbon fiber composites;;interface performance
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:天津工业大学纺织科学与工程学院复合材料研究所先进纺织复合材料教育部重点实验室;航天材料及工艺研究所;
  • 出版日期:2019-05-20
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:国家高技术研究发展计划(863计划)项目(2015AA03A202);; 国家自然科学基金(51403153);; 天津市高等学校创新团队项目(TD13-5043)~~
  • 语种:中文;
  • 页:CLDB201910033
  • 页数:6
  • CN:10
  • ISSN:50-1078/TB
  • 分类号:171-176
摘要
使用自行合成的环氧改性水性聚氨酯(EWPU)上浆剂对碳纤维进行表面处理,主要研究了EWPU上浆剂对碳纤维表面及碳纤维/氰酸酯树脂复合材料界面性能的影响。采用扫描电镜(SEM)、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)和静态接触角等表征方法对比研究了二次上浆处理前碳纤维(CF)和处理后碳纤维(MCF)的表面形貌、表面化学元素组成和浸润性的变化,并通过单纤维破碎实验和短梁剪切法,研究了EWPU上浆剂对碳纤维/氰酸酯树脂复合材料界面力学性能的影响。结果表明,经EWPU上浆处理后碳纤维表面O/C值增加了39.13%,表面活性官能团的含量增加了14.97%,碳纤维与树脂的初始和稳态接触角分别减小了19.41%和20.59%,碳纤维/氰酸酯树脂复合材料的单丝界面剪切强度和层间剪切强度分别增加了13.42%和14.29%。
        Carbon fiber was surface treated by synthesized epoxy-modified waterborne polyurethane(EWPU) sizing agent. The effect of EWPU sizing agent on the surface of carbon fiber and the interfacial properties of the carbon fiber/cyanate ester resin composites were investigated. Specifically, the surface morphology, surface chemical element composition and infiltration of the carbon fiber(CF) and secondary sizing modified carbon fiber(MCF) were characterized by scanning electron microscope(SEM), Fourier transform infrared spectroscope(FTIR), X-ray photoelectron spectroscopy(XPS) and static contact angle measurement. In addition, the effects of EWPU sizing agent on the mechanical properties of carbon fiber/cyanate resin composites were analyzed by single-fiber fragmentation test and short beam shear method. After the EWPU sizing treatment, the surface of carbon fiber exhibited a increase of 39.13% in O/C value and a increase of 14.97% in the content of active functional group, respectively. There were 19.41% and 20.59% decrease in the initial and steady contact angles of carbon fiber and resin, respectively. In addition, carbon fiber/cyanate resin composite presented 13.42% and 14.29% increment in the monofilament interface shear strength and interlaminar shear strength, respectively.
引文
1 Du S Y.Acta Materiae Compositae Sinica,2007,24(1),1(in Chinese).杜善义.复合材料学报,2007,24(1),1.
    2 Sharma M,Gao S,Mader E,et al.Composites Science & Technology,2014,102,35.
    3 Yi X S.Research and development of advanced composite materials techno-logy,National Defense Industry Press,China,2006(in Chinese).益小苏.先进复合材料技术研究与发展,国防工业出版社,2006.
    4 Yu J,Meng L,Fan D,et al.Composites Part B,2014,60(1),261.
    5 Ma Q,Gu Y,Li M,et al.Applied Surface Science,2016,379,199.
    6 Hung K B,Li J,Fan Q,et al.Composites Part A:Applied Science & Ma-nufacturing,2008,39(7),1133.
    7 Xu H,Zhang X,Liu D,et al.Applied Surface Science,2014,320(30),43.
    8 Vautard F,Fioux P,Vidal L,et al.ACS Applied Materials & Interfaces,2014,6(3),1662.
    9 Gosselink R W,Berg R V D,Xia W,et al.Carbon,2012,50(12),4424.
    10 Nursel Dilsiz,Wightman J P.Carbon,1999,37(7),1105.
    11 Zhang R L,Huang Y D,Liu L,et al.Applied Surface Science,2011,257(6),1840.
    12 Yang Y,Lu C X,Su X L,et al.Materials Letters,2007,61(17),3601.
    13 Marieta C,Schulz E,Mondragon I.Composites Science & Technology,2002,62(2),299.
    14 Tim J W,Simmi A,Jeffrey M H,et al.Composites Part A,2004,35(1),75.
    15 Marieta C,Schulz E,Irusta L,et al.Composites Science & Technology,2005,65(14),2189.
    16 Yan H,Feng S,Zhang Z,et al.Journal of Applied Polymer Science,2014,131(9),742.
    17 Ren P,Liang G,Zhang Z.Polymer Composites,2010,27(5):591.
    18 Tao J B,Chen W Q,Zhang Y S,et al.Acta Materiae Compositae Sinica,2018,35(7),1810 (in Chinese).陶积柏,陈维强,张玉生,等.复合材料学报,2018,35(7),1810.
    19 Kelly A,Tyson W R.Journal of the Mechanics & Physics of Solids,1965,13(6),329.
    20 Park J M,Kong J W,Kim J W,et al.Composites Science & Technology,2004,64 (7-8),983.
    21 Sager R J,Klein P J,Lagoudas D C,et al.Composites Science & Techno-logy,2009,69(7),898.
    22 Beyerlein I J,Phoenix S L.Composites Science & Technology,1996,56(1),75.
    23 Schaefer J D,Rodriguez A J,Guzman M E,et al.Carbon,2011,49(8),2750.
    24 Otani H,Phoenix S L,Petrina P.Journal of Materials Science,1991,26(7),1955.
    25 Dilsiz N,Weightman J P.Carbon,1999,37(7),1105.
    26 Huang B Y,Duan Y X,Yang Z,et al.Materials Science & Technology,2014,22(5),60(in Chinese).黄彬瑶,段跃新,杨喆,等.材料科学与工艺,2014,22(5),60.
    27 Liu J,Tian Y L,Chen Y J,et al.Applied Surface Science,2010,256(21),6199.
    28 Zhao Z B,Teng K Y,Li N,et al.Composite Structures,2017,159,761.