甘露糖浸种对干旱胁迫下白三叶种子萌发及抗旱性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects on germination and seedling drought tolerance in white clover of seed soaking with mannose
  • 作者:曾伟航 ; 程碧真 ; 彭燕 ; 李州
  • 英文作者:ZENG Wei-hang;CHENG Bi-zhen;PENG Yan;LI Zhou;College of Animal Science and Technology, Sichuan Agricultural University;
  • 关键词:淀粉代谢 ; 基因差异表达 ; 生长 ; 抗氧化防御 ; 渗透调节
  • 英文关键词:starch metabolism;;gene differential expression;;growth;;antioxidant defense;;osmotic adjustment
  • 中文刊名:CYXB
  • 英文刊名:Acta Prataculturae Sinica
  • 机构:四川农业大学动物科技学院草学系;
  • 出版日期:2019-07-20
  • 出版单位:草业学报
  • 年:2019
  • 期:v.28;No.168
  • 基金:四川省国际合作项目(2017HH0060)资助
  • 语种:中文;
  • 页:CYXB201907012
  • 页数:11
  • CN:07
  • ISSN:62-1105/S
  • 分类号:114-124
摘要
以‘拉丁诺’(Ladino)白三叶为供试材料,研究甘露糖(MAS)浸种对18%PEG 6000干旱胁迫下白三叶种子萌发过程中淀粉代谢、根系活力、渗透调节、抗氧化防御及基因差异表达的影响。试验结果表明,低浓度(0.5、1.0、2.0和5.0 mmol·L~(-1))的MAS浸种预处理能显著提高干旱胁迫下白三叶种子的萌发,其中2.0 mmol·L~(-1)的MAS效果最为明显,但高浓度(10.0 mmol·L~(-1))的MAS浸种处理显著降低了干旱胁迫下种子的萌发率。进一步试验发现,2.0 mmol·L~(-1) MAS浸种预处理能显著提高干旱胁迫下种子萌发时根系生长、根系活力和淀粉酶活性,有效缓解干旱胁迫抑制的淀粉分解,也显著增加了干旱胁迫下种子萌发过程中游离脯氨酸的积累,并降低细胞渗透势。此外,2.0 mmol·L~(-1)的MAS浸种预处理后,种子在干旱胁迫下萌发过程中超氧化物歧化酶(SOD)和过氧化物酶(POD)活性及细胞总抗氧化能力显著提高,MnSOD和POD基因转录水平显著增强,维持了细胞内显著较低的活性氧、电解质渗透率和MDA含量,缓解了胁迫对细胞造成的氧化性伤害。但2.0 mmol·L~(-1) MAS浸种预处理并没有提高水分胁迫下白三叶种子萌发时可溶性糖含量,推测MAS促进淀粉分解产生的糖可能主要用于维持胁迫下籽苗的生长。上述结果表明MAS显著提高白三叶种子在干旱胁迫下萌发时的抗性且与促进淀粉代谢、提高渗透调节能力及增强抗氧化防御系统密切相关,且低浓度MAS浸种处理对正常水分条件下白三叶种子萌发也具有一定的促进作用。
        The experiment studied germination and early development of white clover(Trifolium repens cv. ‘Ladino') seeds subject to drought stress induced by 18% polyethylene glycol(PEG) 6000 solution. Effects on starch metabolism, root activity, osmotic adjustment, antioxidant defense, and gene differential expression, of seed soaking with mannose solution(MAS), were analyzed during the germination period. Different MAS concentrations were investigated including 0(Control), 1.0, 2.0, 5.0 and 10.0 mmol·L~(-1). Seed soaking with low concentration(0.5, 1.0, 2.0 and 5.0 mmol·L~(-1)) of MAS significantly increased seed germination under drought stress, with the 2.0 mmol·L~(-1) MAS concentration having the most pronounced beneficial effects. However, higher MAS concentration(10.0 mmol·L~(-1)) significantly reduced seed germination under drought stress. Further experiments found that seeds soaked with 2.0 mmol·L~(-1) MAS displayed significant increases in root growth, root activity, and amylase activities than seeds soaking with 0 mmol·L~(-1) MAS during germination under drought stress. The MAS pretreatment effectively alleviated the stress-induced inhibition of amylolysis, significantly increased the accumulation of free proline, and resulted in a more negative seed osmotic potential during germination. As compared to Control seedlings, the total antioxidant capacity, activities of superoxide dismutase(SOD) and peroxidase(POD), and transcriptional levels of MnSOD and POD significantly increased in the seedlings with 2.0 mmol·L~(-1) MAS treatment under drought stress. MAS treatment also resulted in significantly lower levels of reactive oxygen species, electrolyte leakage, and malondialdehyde in cells indicating lower oxidative damage. However, 2.0 mmol·L~(-1) of MAS soaking pretreatment did not increase the soluble sugar content during seed germination under drought stress, which indicated that the more negative osmotic potential induced by MAS was mainly related to the accumulation of free proline. In summary, the MAS-promoted production of soluble sugars through accelerated amylolysis is potentially useful to maintain seedling growth under stress. These results indicate that MAS significantly improves drought tolerance of white clover seeds during germination and early development. This response is closely associated with promotion of starch breakdown, enhancement of osmotic adjustment, and improvement of antioxidant defense during seed germination. Seed soaking with a low concentration of MAS may also be useful to promote seed germination of white clover in conditions where water is more freely available.
引文
[1] Intergovernmental Panel on Climate Change.Climate change 2001:Impacts,adaptation and vulnerability of climate change,working group II report.London:Cambridge University Press,2001.
    [2] Zhang Q,Gao G.The spatial and temporal features of drought and flood disasters in the past 50 years and monitoring and warning services in China.Science & Technology Review,2004,(7):21-24.张强,高歌.我国近50年旱涝灾害时空变化及监测预警服务.科技导报,2004,(7):21-24.
    [3] Ren L,Zhao X L,Xu J,et al.Varied morphological and physiological responses to drought stress among four tea Chrysanthemum cultivars.Acta Ecologica Sinica,2015,35(15):5131-5139.任磊,赵夏陆,许靖,等.4种茶菊对干旱胁迫的形态和生理响应.生态学报,2015,35(15):5131-5139.
    [4] Li Z,Wang X J,Peng D D,et al.Effects of Na+ on antioxidant defence and accumulation of osmoregulatory substances in white clover under water deficit stress.Acta Prataculturae Sinica,2014,23(5):175-183.李州,王晓娟,彭丹丹,等.Na+对水分胁迫下白三叶抗氧化防御和有机渗透调节物质的影响.草业学报,2014,23(5):175-183.
    [5] Fu M M,Li X H,Li Q.Effect of drought stress on the germination of okra seed.Journal of Shanxi Agricultural Sciences,2018,46(3):350-353.付咪咪,李鲜花,李强.干旱胁迫对黄秋葵种子萌发的影响.山西农业科学,2018,46(3):350-353.
    [6] Liu Y,Xu H,Wen X X,et al.Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates.Journal of Integrative Agriculture,2016,15(12):2759-2774.
    [7] Hu X Y,Hu T M,Li H X.Comparison of drought-resistance of Dichondra repens and Zoysia japonica at emergence stage.Pratacultural Science,2006,23(1):89-92.胡晓艳,呼天明,李红星.草坪草马蹄金与结缕草种子萌发期抗旱性比较.草业科学,2006,23(1):89-92.
    [8] Jin Z M,Sha W.Study on drought resistance of Trifolium repens Linn seedlings.Northern Horticulture,2010,(18):50-52.金忠民,沙伟.白三叶抗旱性生理的研究.北方园艺,2010,(18):50-52.
    [9] Zhang Y,Peng Y,He X S.Effect of soaking seeds with betaine on seed germination characteristics of white clover (Trifolium repens L.) under the simulated drought stress.Chinese Journal of Grassland,2014,36(4):31-37.张艳,彭燕,何小双.甜菜碱浸种对干旱胁迫下白三叶种子萌发特性的影响.中国草地学报,2014,36(4):31-37.
    [10] Li Z,Peng Y,Zhang X Q,et al.Exogenous spermidine improves seeds germination of white clover under water stress via involvement in starch metabolism,antioxidant defenses and relevant gene expression.Molecules,2014,19:18003-18024.
    [11] Hameed A,Iqbal N,Malik S A.Mannose-induced modulations in antioxidants,protease activity,lipid peroxidation,and total phenolics in etiolated wheat leaves.Journal of Plant Growth Regulation,2009,8:58-65.
    [12] He C M,Yu Z M,Silva J A T,et al.DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response.Scientific Reports,2017,7:41010.
    [13] Ai T B,Liao X H,Li R,et al.GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco.Zeitschrift für Naturforschung C,2016,71(7/8):243-252.
    [14] Zou Q.Experimental guidance on plant physiology.Beijing:China Agricultural Press,2000:161-174.邹琦.植物生理学实验指导.北京:中国农业出版社,2000:161-174.
    [15] Blum A,Ebercon A.Cell membrane stability as a measure of drought and heat tolerance in wheat.Crop Science,1981,21:43-47.
    [16] Dhindsa R S,Dhindsa P P,Thorpe T A.Leaf senescence:Correlated with increased leaves of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase.Journal of Experimental Botany,1981,32:93-101.
    [17] Giannopolities C N,Ries S K.Superoxide dismutase:I.occurrence in higher plants.Plant Physiology,1977,59:309-314.
    [18] Chance B,Maehly A C.Assay of catalase and peroxidase.Methods in Enzymology,1955,2:764-775.
    [19] Hao J J,Kang Z L,Yu Y.Experimental technique of plant physiology.Beijing:Chemical Industry Press,2006.郝建军,康宗利,于洋.植物生理实验技术.北京:化学工业出版社,2006.
    [20] Uchida A,Andre T I,Takashi H.Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice.Plant Science,2002,163:515-523.
    [21] Wang X Q,Qin S Y,Gao T H,et al.Basic biochemistry experiment.Beijing:Higher Education Press,1999.王秀奇,秦淑媛,高天慧,等.基础生物化学实验.北京:高等教育出版社,1999.
    [22] Xia X J,Wang Y J,Zhou Y H,et al.Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber.International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,2009,150:801-814.
    [23] Hameed A,Iqbal N.Chemo-priming with mannose,mannitol and H2O2 mitigate drought stress in wheat.Cereal Research Communications,2014,42(3):450-462.
    [24] Zhu J H.Research on the changes of amylase activity during germination of some crops seeds.Journal of Ningbo Polytechnic,2014,18(3):87-89,93.朱建华.作物发芽种子淀粉酶活性变化的研究.宁波职业技术学院学报,2014,18(3):87-89,93.
    [25] Yan E,Qiao Y M.Study of amylase activities in germinating seeds of two oat varieties.Pratacultural Science,2006,23(9):96-98.阎娥,乔有明.两燕麦品种种子萌发中淀粉酶活性变化的研究.草业科学,2006,23(9):96-98.
    [26] Li W R,Zhang S Q,Shan L.Seeds germination characteristics and drought tolerance of alfalfa and sorghum seedling under water stress.Acta Ecologica Sinica,2009,29(6):3066-3074.李文娆,张岁岐,山仑.水分胁迫下紫花苜蓿和高粱种子萌发特性及幼苗耐旱性.生态学报,2009,29(6):3066-3074.
    [27] Pan M H,Li Z,Peng D D,et al.Effects of seed-soaking with spermidine on seed germination and starch metabolism of white clover (Trifolium repens L.) under osmotic stress.Plant Physiology Journal,2014,50(4):426-432.潘明洪,李州,彭丹丹,等.亚精胺浸种对渗透胁迫下白三叶种子萌发及淀粉代谢的影响.植物生理学报,2014,50(4):426-432.
    [28] Ji Y,Zhang X Q,Peng Y,et al.Effects of drought stress on the root growth and photosynthetic characters of Dactylis glomerata seedlings.Chinese Journal of Applied Ecology,2013,24(10):2763-2769.季杨,张新全,彭燕,等.干旱胁迫对鸭茅幼苗根系生长及光合特性的影响.应用生态学报,2013,24(10):2763-2769.
    [29] Lang D M,Qin S J,Zhu Z T,et al.Effects of exogenous glucose on growth and root nitrogen metabolism in Malus baccata.Chinese Journal of Applied Ecology,2018,29(3):797-804.郎冬梅,秦嗣军,朱紫檀,等.外源葡萄糖对山定子生长及根系氮素代谢的影响.应用生态学报,2018,29(3):797-804.
    [30] Guo H J.Research progress on osmotic adjustment material under water stress.Journal of Anhui Agricultural Sciences,2010,38(15):7750-7753.郭华军.水分胁迫过程中的渗透调节物质及其研究进展.安徽农业科学,2010,38(15):7750-7753.
    [31] Franklin G,Concei??o L F,Kombrink E,et al.Xanthone biosynthesis in hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress.Phytochemistry,2009,70(1):60-68.
    [32] Liu Y,Chen G L,Cai G F,et al.Growth hand osmoregulation substances accumulation of Glycyrrhiza uralensis seedling under drought stress.Acta Botanica Boreali-Occidentalia Sinica,2011,31(11):2259-2264.刘艳,陈贵林,蔡贵芳,等.干旱胁迫对甘草幼苗生长和渗透调节物质含量的影响.西北植物学报,2011,31(11):2259-2264.
    [33] Wu X H,Feng J M.Effects of extraneous spermidine on antioxidant enzyme activities and other physiological characteristics of pumpkin seedlings under osmotic stress.Agricultural Research in the Arid Areas,2017,35(4):255-262.吴旭红,冯晶旻.外源亚精胺对渗透胁迫下南瓜幼苗抗氧化酶活性等生理特性的影响.干旱地区农业研究,2017,35(4):255-262.
    [34] Li Y,Zeng X E,Li H Y,et al.Effects of oligochitosan on the leaf physiological indices of Brassica napus L.under drought stress.Chinese Journal of Ecology,2012,31(12):3080-3085.李艳,曾秀娥,李洪艳,等.壳寡糖对干旱胁迫下油菜叶片生理指标的影响.生态学杂志,2012,31(12):3080-3085.
    [35] Marikovsky M,Ziv V,Nevo N,et al.Cu/Zn superoxide dismutase plays important role in immune response.The Journal of Immunology,2003,170(6):2993-3001.
    [36] Zhao X Q,Liang T S,Zhao R Z.Effects of chitooligosaccharide on plant growth and antioxidant system in seedlings of wheat (Triticum aestivum L.) under PEG stress.Journal of Agricultural Science and Technology,2018,20(4):20-28.赵肖琼,梁泰帅,赵润柱.壳寡糖对 PEG 胁迫下小麦幼苗生长及抗氧化系统的影响.中国农业科技导报,2018,20(4):20-28.
    [37] Shen S Y,Wu Y X,Zheng Y S.Review on drought response in plants from phenotype to molecular.Current Biotechnology,2017,7(3):169-176.沈少炎,吴玉香,郑郁善.植物干旱胁迫响应机制研究进展—从表型到分子.生物技术进展,2017,7(3):169-176.
    [38] Wang F Z,Wang Q B,Kwon S Y,et al.Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase.Journal of Plant Physiology,2005,162(4):465-472.