玉米大豆间作种植密度耦合数学模型及其优化方案研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping
  • 作者:代希茜 ; 詹和明 ; 崔兴洪 ; 赵银月 ; 单丹丹 ; 张亮 ; 王铁军
  • 英文作者:Dai Xixi;Zhan Heming;Cui Xinghong;Zhao Yinyue;Shan DANDan;Zhang Liang;Wang Tiejun;Institute of Food Crops, Yunnan Academy of Agricultural Sciences;Huize Agricultural Technology Extension Center;
  • 关键词:玉米 ; 大豆 ; 间作 ; 种植密度耦合 ; 数学模型 ; 优化方案
  • 英文关键词:Maize;;Soybean;;Intercropping;;Planting density coupling;;Mathematics model;;Optimization scheme
  • 中文刊名:ZWZZ
  • 英文刊名:Crops
  • 机构:云南省农业科学院粮食作物研究所;会泽县农业技术推广中心;
  • 出版日期:2019-04-12 14:52
  • 出版单位:作物杂志
  • 年:2019
  • 期:No.189
  • 基金:国家大豆产业技术体系昆明综合试验站(CARS-04-CES29)
  • 语种:中文;
  • 页:ZWZZ201902021
  • 页数:8
  • CN:02
  • ISSN:11-1808/S
  • 分类号:134-141
摘要
云南省大豆的种植主要以与玉米间作为主,适宜的种植密度是获得高产的前提,为研究种植密度对群体产量和经济产值的影响,找到最佳种植密度组合。采用二次饱和D-最优设计,分别在云南嵩明县(A)、会泽县(B)和鲁甸县(C)等3个点进行试验。研究了玉米和大豆种植密度对群体产量和经济产值的影响,并分别建立二元二次数学模型。结果表明:玉米和大豆密度对间作群体产量和经济产值影响显著,均呈凸抛物线型变化,在低密度水平下,群体产量和经济产值随密度的增加而增加。通过模型解析表明,玉米+大豆密度组合分别为64 110株/hm~2+147 013株/hm~2(A)、63 068株/hm~2+147 116株/hm~2(B)、64 059株/hm~2+145 077株/hm~2(C)时,各试验点可分别达到最高群体产量。玉米+大豆密度组合分别为62 909株/hm~2+149 852株/hm~2(A)、61 499株/hm~2+151 807株/hm~2(B)、62 762株/hm~2+147 108株/hm~2(C)时,各试验点可分别达到最高产值。经模拟得出,在本试验条件下,各试验点玉米大豆间作群体产量≥12 270kg/hm~2、经济产值≥24 000元/hm~2的最佳密度组合分别为玉米59 251~66 437株/hm~2、大豆140 075~161 495株/hm~2(A),玉米58 927~65 366株/hm~2、大豆144 159~169 203株/hm~2(B),玉米58 821~66 703株/hm~2、大豆139 315~154 886株/hm~2(C)。合理的密度搭配能有效提高群体产量,获得较高经济产值。
        Maize and soybean intercropping planting is mainly composed of soybean planting in Yunnan Province.In order to achieve high yield of maize and soybean intercropping system, we must have suitable planting density.The effect of planting density on population grain yield and economic output value was studied with the design of the double saturated D-optimal regression, which was tested at three sites including Songming County(A), Huize County(B) and Ludian County(C), respectively. And a binary quadratic mathematical model was established, in which the planting densities of maize and soybean were independent variables, and population grain yield and economic output value were dependent variables. The results showed that the planting density of maize and soybean on population grain yield and economic output value of intercropping group effect significantly, and the change curve was a convex parabola. The population yield and economic output increased with density under the low level of density. According to model analysis, each test site could reach the highest population grain yield with the optimized combination of maize 64 110 plant/hm~2+ soybean 147 013 plant/hm~2(A), maize 63 068 plant/hm~2+soybean 147 116 plant/hm~2(B) and maize 64 059 plant/hm~2+soybean 145 077 plant/hm~2(C), respectively. Each test site could reach the highest economic output value with the optimized combination of maize 62 909 plant/hm~2+soybean 149 852 plant/hm~2(A), maize 61 499 plant/hm~2+soybean 151 807 plant/hm~2(B) and maize 62 762 plant/hm~2+soybean 147 108 plant/hm~2(C), respectively.According computer simulation, the optimum combination of densities of maize and soybean were 59 251-66 437 plant/hm~2 for maize and 140 075-161 495 plant/hm~2 for soybean(A), 58 927-65 366 plant/hm~2 for maize and 144 159-169 203 plant/hm~2 for soybean(B), 58 821-66 703 plant/hm~2 for maize and 139 315-154 886 plant/hm~2 for soybean(C)in order to obtain population grain yield greater than 12 270 kg/hm~2 and economic output value greater 24 000 yuan/hm~2 under the condition of this experiment. A reasonable density collocation can effectively increase population yield and economic output value.
引文
[1]Yang F,Liao D,Wu X. Effect of aboveground and belowground interactionsontheintercropyieldsinmaize-soybeanrelay intercropping systems. Field Crops Research,2017,203:16-23.
    [2]GouF,YinW,HongY.Onyieldgapsandyieldgainsin intercropping:Opportunities for increasing grain production in northwest China. Agricultural Systems,2017,151:96-105.
    [3]Ren Y,Liu J,Wang Z. Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and wateruse efficiencies on the Loess Plateau,China. European Journal of Agronomy,2016,72:70-79.
    [4]Liu X,Rahman T,Song C. Changes in light environment,morphology,growth and yield of soybean in maize-soybean intercropping systems.Field Crops Research,2017,200:38-46.
    [5]方传文.玉豆间作条件下大豆生长和生理特性研究.南京:南京农业大学,2014.
    [6]周新安,年海,杨文钰,等.南方间套作大豆生产发展的现状与对策(Ⅱ).大豆科技,2010(4):1-3.
    [7]高阳,段爱旺,刘祖贵,等.单作和间作对玉米和大豆群体辐射利用率及产量的影响.中国生态农业学报,2009,17(1):7-12.
    [8]刘艳昆,阎旭东,徐玉鹏,等. DTOPSIS法综合评价玉米间作大豆的密度配置和品种选择.天津农业科学,2014,20(11):83-87.
    [9]雍太文,杨文钰,向达兵,等.玉/豆套作模式下玉米播期与密度对大豆农艺性状及产量的影响.大豆科学,2009,28(3):439-444.
    [10]Echarte L,Maggiora A D,Cerrudo D. Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Research,2011,121(3):423-429.
    [11]林绍森,唐永金.玉米密度、行距和穴距对间作大豆光合速率的效应分析.大豆科学,2007,26(2):149-153.
    [12]谭春燕,刘作易,朱星陶,等.不同密度间作大豆的光合生理响应.贵州农业科学,2012,40(8):49-52.
    [13]朱元刚,高凤菊,曹鹏鹏,等.种植密度对玉米-大豆间作群体产量和经济产值的影响.应用生态学报,2015,26(6):1751-1758.
    [14]吴兰.密度、带型与播差期对玉米间作大豆产量及品质的影响研究.贵阳:贵州大学,2007.
    [15]吕越.玉米/大豆种内与种间作物的资源竞争.杨凌:西北农林科技大学,2014.
    [16]焦志勇,周绍美.二次饱和D-最优设计.山东农业科学,1989(2):46-49.
    [17]刘伟明.二次饱和D-最优设计在甘薯栽培试验中的应用.安徽农业科学,2011,39(35):21625-21626.
    [18]肖俊璋,冯固,何尚仁,等.应用二次饱和D-最优设计研究肥料效应方程.土壤通报,1986(1):27-30.
    [19]林堃,李绍武.应用二次回归饱和D-最优设计研究甘蔗氮、磷、钾肥料效应.甘蔗糖业,1992(5):9-15.
    [20]马国胜,薛吉全,路海东,等.播种时期与密度对关中灌区夏玉米群体生理指标的影响.应用生态学报,2007,18(6):1247-1253.
    [21]曹鲜艳,徐福利,王渭玲,等.黄芩产量和黄芩苷含量对氮磷钾肥料的响应.应用生态学报,2012,23(8):2171-2177.
    [22]代希茜,詹和明,赵银月,等.玉/豆间作模式下幅宽和玉米密度配置优化研究.西南农业学报,2018,31(1):39-43.