基于MRAS的飞轮储能系统控制与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Control and Application of Flywheel Energy Storage System Based on MRAS
  • 作者:万德超 ; 孙树敏 ; 尹文泉
  • 英文作者:WAN Dechao;SUN Shumin;YIN Wenquan;State Grid Shandong Anqiu Power Supply Company;School of Electrical and Electronic Engineering,Shandong University of Technology;
  • 关键词:风力发电系统 ; 飞轮储能系统 ; MRAS ; 滑模变结构 ; 双环控制 ; 功率平滑
  • 英文关键词:wind power generation system;;flywheel energy storage system;;MRAS;;sliding mode variable structure;;double-loop control;;power smoothing
  • 中文刊名:XBDJ
  • 英文刊名:Smart Power
  • 机构:国网安丘市供电公司;山东理工大学电气与电子工程学院;
  • 出版日期:2019-06-20
  • 出版单位:智慧电力
  • 年:2019
  • 期:v.47;No.308
  • 基金:国家重点研发计划资助项目(2016YFB0900605)~~
  • 语种:中文;
  • 页:XBDJ201906016
  • 页数:6
  • CN:06
  • ISSN:61-1512/TM
  • 分类号:107-112
摘要
飞轮储能系统具有能量转化速度快、效率高以及使用寿命长等优势,可平抑风力发电系统输出功率波动。为了减小飞轮储能系统模式切换时对电网的冲击,提出了一种基于无速度传感器(MRAS)的飞轮储能系统控制方法,该控制方法采用滑模变结构解决了传统的MRAS存在的积分饱和初值偏移误差问题,飞轮驱动电机采用双环控制策略。仿真结果表明,飞轮储能系统充放电波形稳定,风电场输出功率平滑效果较理想。该研究可为飞轮储能系统控制方法的优化和风电场功率平滑策略的选择提供参考。
        Flywheel energy storage system has the advantages of fast energy conversion,high efficiency and long service life,which can suppress the output power fluctuation of wind power generation system.In order to reduce the impact of flywheel energy storage system mode switching on power grid,a speed sensorless(MRAS)based control method for flywheel energy storage system is proposed.The sliding mode variable structure control method solves the problem of integral saturation initial value offset error existing in traditional MRAS,and the flywheel drive motor adopts double-loop control strategy.The simulation results show that the charging and discharging waveforms of the flywheel energy storage system are stable,and the smoothing effect of wind farm output power is ideal.This study can provide a reference for the optimization of flywheel energy storage sys tem control method and the selection of wind farm power smoothing strategy.
引文
[1]童光毅.关于当代能源转型方向的探讨[J].智慧电力,2018,46(10):1-3.TONG Guangyi.Probe into modern energy structure transition[J].Smart Power,2018,46(10):1-3.
    [2]应飞祥,姜燕波,何民,等.含风储系统的电力系统可靠性评估进展与展望[J].智慧电力,2019(2)1-8,42.YING Feixiang,Jiang Yanbo,He Min,et al.Progress and prospect of power system reliability assessment with wind storage system[J].Smart Power,2019,47(2)1-8,42.
    [3]张新宾.储江伟,李洪亮,等.飞轮储能系统关键技术及其研究现状[J].储能科学与技术,2015,4(1):55-60.ZHANG Xinbin,CHU Jiangwei,LI Hongliang,et al.Key technologies of flywheel energy storage systems and their current research status[J].Journal of Energy Storage Science and Technology,2015,4(1):55-60.
    [4]刘学,姜新建,张超平,等.大容量飞轮储能系统优化控制策略[J].电工技术学报,2014,29(3):75-82.LIU Xue,JIANG Xinjian,ZHANG Chaoping,et al.Optimal control strategy for large capacity flywheel energy storage system[J].Journal of Electrical Technology,2014,29(3):75-82.
    [5]刘文军,周龙,唐西胜,等.基于改进型滑模观测器的飞轮储能系统控制方法[J].中国电机工程学报,2014,34(1):71-78.LIU Wenjun,ZHOU Long,TANG Xisheng,et al.Flywheel energy storage system control method based on improved sliding mode observer[J].Proceedings of the CSEE,2014,34(1):71-78.
    [6]刘颖明,王维,王晓东,等.基于滑模控制器的风电场飞轮储能系统的控制方法[J].电器与能效管理技术,2017,59(10):25-28.LIU Yingming,WANG Wei,WANG Xiaodong,et al.Control method of flywheel energy storage system in wind farm based on sliding mode controller[J].Electrical Appliances and Energy Efficiency Management Technology,2017,59(10):25-28.
    [7]刘世林,文劲宇,高文根,等.基于飞轮储能的并网风电功率综合调控策略[J].电力自动化设备,2015,35(12):34-39.LIU Shilin,WEN Jinyu,GAO Wengen,et al.Integrated control strategy of grid-connected wind power based on flywheel energy storage[J].Power Automation Equipment,2015,35(12):34-39.
    [8]张弛,黄培专,裴星宇.网侧功率波动条件下储能变流器控制策略[J].广东电力,2017,30(8):47-52.ZHANG Chi,HUANG Peizhuan,PEI Xingyu,Controlstrategy for energy storage converter under grid-side power fluctuation[J].Guangdong Electric Power,2017,30(8):47-52.
    [9]刘大贺,韩晓娟,李建林.基于光伏电站场景下的梯次电池储能经济性分析[J].电力工程技术,2017,36(6):27-31,77.LIU Dahe,HAN Xiaojuan,LI Jianlin.Economic analysis of echelon battery energy storage based on artificial fish swarm algorithm[J].Electric Power Engine ering Teachnology,2017,36(6):27-31,77.
    [10]陈亚爱,甘时霖,周京华,等.飞轮储能技术[J].电源技术,2016,40(8):1718-1721.CHEN Ya'ai,GAN Shilin,ZHOU Jinghua,et al.Flywheel energy storage technology[J].Power Technology,2016,40(8):1718-1721.
    [11]刘文军,唐西胜,周龙,等.基于背靠背双PWM变流器的飞轮储能系统并网控制方法研究[J].电工技术学报,2015,30(16):120-128.LIU Wenjun,TANG Xisheng,ZHOU Long,et al.Research on grid-connected control method of flywheel energy storage system based on back-to-back dual PWM converter[J].Journal of Electrical Technology,2015,30(16):120-128.
    [12]张海,魏春雪,韩建伟,等.飞轮储能装置的双闭环控制策略研究[J].电子质量,2016,37(1):76-79.ZHANG Hai,WEI Chunxue,HAN Jianwei,et al.Study on double closed-loop control strategy of flywheel energy storage device[J].Electronic Quality,2016,37(1):76-79.
    [13]梅柏杉,高宁,孟悦然.一种新型的MRAS转速估计法[J].电气传动,2016,46(3):12-14.MEI Baishan,GAO Ning,MENG Yueran.A new MRASspeed estimation method[J].Electric Drive,2016,46(3):12-14.
    [14]朱熀秋,汤延祺.飞轮储能关键技术及应用发展趋势[J].机械设计与制造,2017,55(1):265-268.ZHU Yuqiu,TANG Yanqi.Key technologies and application trends of flywheel energy storage[J].Mechanical Design and Man ufacturing,2017,55(1):265-268.
    [151熊倩,廖勇,姚骏.含飞轮储能单元的直驱永磁风力发电系统有功功率平滑控制[J].电力自动化设备,2013,33(5):97-105.XIONG Qian,LIAO Yong,YAO Jun.Active power smoothing control of direct-drive permanent magnet wind power generation system with flywheel energy storage unit[J].Electric Power Automation Equipment,2013,33(5):97-105.
    [16]魏鲲鹏,汪勇,戴兴建.飞轮储能系统在风力发电中应用研究进展[J].储能科学与技术,2015,4(2):141-146.WEI Kunpeng,WANG Yong,DAI Xingjian.Advances in the application of flywheel energy storage system in wind power generation[J].Energy Storage Science and Technology,2015,4(2):141-146.
    [17]冯奕,颜建虎.基于飞轮储能的风力发电系统仿真[J].电力系统保护与控制,2016,44(20):94-98.FENG Yi,YAN Jianhu.Simulation of wind power generation system based on flywheel energy storage[J].Power System Protection and Control,2016,44(20):94-98.